liewchooichin/distilbert-base-uncased-tiny-imdb
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 2.9373
- Validation Loss: 2.9930
- Epoch: 2
Model description
This model is created from following the lesson in Hugging Face Learn. NLP -- Main NLP Tasks -- Fine-tuning a masked language model.
Intended uses & limitations
This is only a small scale fine-tuning of the standfordnlp/imbd
datasets. Only 1000 rows of the unsupervised
dataset is used for training.
The exercise is carried on Google Colab - T4 gpu.
Training and evaluation data
1000 rows from the standfordnlp/imbd
datasets.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -969, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
Training results
Train Loss | Validation Loss | Epoch |
---|---|---|
3.2484 | 3.2338 | 0 |
3.0821 | 2.8758 | 1 |
2.9373 | 2.9930 | 2 |
Framework versions
- Transformers 4.40.2
- TensorFlow 2.15.0
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for liewchooichin/distilbert-base-uncased-tiny-imdb
Base model
distilbert/distilbert-base-uncased