wav2vec2-large-xlsr-coraa-portuguese-cv8
This model is a fine-tuned version of Edresson/wav2vec2-large-xlsr-coraa-portuguese on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 0.1626
- Wer: 0.1365
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 5000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.5614 | 0.1 | 100 | 0.2542 | 0.1986 |
0.5181 | 0.19 | 200 | 0.2740 | 0.2146 |
0.5056 | 0.29 | 300 | 0.2472 | 0.2068 |
0.4747 | 0.39 | 400 | 0.2464 | 0.2166 |
0.4627 | 0.48 | 500 | 0.2277 | 0.2041 |
0.4403 | 0.58 | 600 | 0.2245 | 0.1977 |
0.4413 | 0.68 | 700 | 0.2156 | 0.1968 |
0.437 | 0.77 | 800 | 0.2102 | 0.1919 |
0.4305 | 0.87 | 900 | 0.2130 | 0.1864 |
0.4324 | 0.97 | 1000 | 0.2144 | 0.1902 |
0.4217 | 1.06 | 1100 | 0.2230 | 0.1891 |
0.3823 | 1.16 | 1200 | 0.2033 | 0.1774 |
0.3641 | 1.25 | 1300 | 0.2143 | 0.1830 |
0.3707 | 1.35 | 1400 | 0.2034 | 0.1793 |
0.3767 | 1.45 | 1500 | 0.2029 | 0.1823 |
0.3483 | 1.54 | 1600 | 0.1999 | 0.1740 |
0.3577 | 1.64 | 1700 | 0.1928 | 0.1728 |
0.3667 | 1.74 | 1800 | 0.1898 | 0.1726 |
0.3283 | 1.83 | 1900 | 0.1920 | 0.1688 |
0.3571 | 1.93 | 2000 | 0.1904 | 0.1649 |
0.3467 | 2.03 | 2100 | 0.1994 | 0.1648 |
0.3145 | 2.12 | 2200 | 0.1940 | 0.1682 |
0.3186 | 2.22 | 2300 | 0.1879 | 0.1571 |
0.3058 | 2.32 | 2400 | 0.1975 | 0.1678 |
0.3096 | 2.41 | 2500 | 0.1877 | 0.1589 |
0.2964 | 2.51 | 2600 | 0.1862 | 0.1568 |
0.3068 | 2.61 | 2700 | 0.1809 | 0.1588 |
0.3036 | 2.7 | 2800 | 0.1769 | 0.1573 |
0.3084 | 2.8 | 2900 | 0.1836 | 0.1524 |
0.3109 | 2.9 | 3000 | 0.1807 | 0.1519 |
0.2969 | 2.99 | 3100 | 0.1851 | 0.1516 |
0.2698 | 3.09 | 3200 | 0.1737 | 0.1490 |
0.2703 | 3.19 | 3300 | 0.1759 | 0.1457 |
0.2759 | 3.28 | 3400 | 0.1778 | 0.1471 |
0.2728 | 3.38 | 3500 | 0.1717 | 0.1462 |
0.2398 | 3.47 | 3600 | 0.1767 | 0.1451 |
0.256 | 3.57 | 3700 | 0.1742 | 0.1410 |
0.2712 | 3.67 | 3800 | 0.1674 | 0.1414 |
0.2648 | 3.76 | 3900 | 0.1717 | 0.1423 |
0.2576 | 3.86 | 4000 | 0.1672 | 0.1403 |
0.2504 | 3.96 | 4100 | 0.1683 | 0.1381 |
0.2406 | 4.05 | 4200 | 0.1685 | 0.1399 |
0.2403 | 4.15 | 4300 | 0.1656 | 0.1381 |
0.2233 | 4.25 | 4400 | 0.1687 | 0.1371 |
0.2546 | 4.34 | 4500 | 0.1642 | 0.1377 |
0.2431 | 4.44 | 4600 | 0.1655 | 0.1372 |
0.2337 | 4.54 | 4700 | 0.1625 | 0.1370 |
0.2607 | 4.63 | 4800 | 0.1618 | 0.1363 |
0.2292 | 4.73 | 4900 | 0.1622 | 0.1366 |
0.2232 | 4.83 | 5000 | 0.1626 | 0.1365 |
Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.2
- Tokenizers 0.11.0
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.