|
--- |
|
language: |
|
- pt |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
- hf-asr-leaderboard |
|
- pt |
|
- robust-speech-event |
|
datasets: |
|
- mozilla-foundation/common_voice_7_0 |
|
model-index: |
|
- name: sew-tiny-portuguese-cv7 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 7 |
|
type: mozilla-foundation/common_voice_7_0 |
|
args: pt |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 28.9 |
|
- name: Test CER |
|
type: cer |
|
value: 9.41 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Dev Data |
|
type: speech-recognition-community-v2/dev_data |
|
args: sv |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 47.27 |
|
- name: Test CER |
|
type: cer |
|
value: 19.62 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Dev Data |
|
type: speech-recognition-community-v2/dev_data |
|
args: pt |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 47.3 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Test Data |
|
type: speech-recognition-community-v2/eval_data |
|
args: pt |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 49.83 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# sew-tiny-portuguese-cv7 |
|
|
|
This model is a fine-tuned version of [lgris/sew-tiny-pt](https://huggingface.co/lgris/sew-tiny-pt) on the common_voice dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4232 |
|
- Wer: 0.2745 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- training_steps: 40000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:-----:|:---------------:|:------:| |
|
| No log | 2.6 | 1000 | 1.0034 | 0.7308 | |
|
| 4.1307 | 5.19 | 2000 | 0.6274 | 0.4721 | |
|
| 4.1307 | 7.79 | 3000 | 0.5541 | 0.4130 | |
|
| 1.3117 | 10.39 | 4000 | 0.5302 | 0.3880 | |
|
| 1.3117 | 12.99 | 5000 | 0.5082 | 0.3644 | |
|
| 1.2047 | 15.58 | 6000 | 0.4818 | 0.3539 | |
|
| 1.2047 | 18.18 | 7000 | 0.4822 | 0.3477 | |
|
| 1.14 | 20.78 | 8000 | 0.4781 | 0.3428 | |
|
| 1.14 | 23.38 | 9000 | 0.4840 | 0.3401 | |
|
| 1.0818 | 25.97 | 10000 | 0.4613 | 0.3251 | |
|
| 1.0818 | 28.57 | 11000 | 0.4569 | 0.3257 | |
|
| 1.0451 | 31.17 | 12000 | 0.4494 | 0.3132 | |
|
| 1.0451 | 33.77 | 13000 | 0.4560 | 0.3201 | |
|
| 1.011 | 36.36 | 14000 | 0.4687 | 0.3174 | |
|
| 1.011 | 38.96 | 15000 | 0.4397 | 0.3122 | |
|
| 0.9785 | 41.56 | 16000 | 0.4605 | 0.3173 | |
|
| 0.9785 | 44.16 | 17000 | 0.4380 | 0.3064 | |
|
| 0.9458 | 46.75 | 18000 | 0.4372 | 0.3048 | |
|
| 0.9458 | 49.35 | 19000 | 0.4426 | 0.3039 | |
|
| 0.9126 | 51.95 | 20000 | 0.4317 | 0.2962 | |
|
| 0.9126 | 54.54 | 21000 | 0.4345 | 0.2960 | |
|
| 0.8926 | 57.14 | 22000 | 0.4365 | 0.2948 | |
|
| 0.8926 | 59.74 | 23000 | 0.4306 | 0.2940 | |
|
| 0.8654 | 62.34 | 24000 | 0.4303 | 0.2928 | |
|
| 0.8654 | 64.93 | 25000 | 0.4351 | 0.2915 | |
|
| 0.8373 | 67.53 | 26000 | 0.4340 | 0.2909 | |
|
| 0.8373 | 70.13 | 27000 | 0.4279 | 0.2907 | |
|
| 0.83 | 72.73 | 28000 | 0.4214 | 0.2867 | |
|
| 0.83 | 75.32 | 29000 | 0.4256 | 0.2849 | |
|
| 0.8062 | 77.92 | 30000 | 0.4281 | 0.2826 | |
|
| 0.8062 | 80.52 | 31000 | 0.4398 | 0.2865 | |
|
| 0.7846 | 83.12 | 32000 | 0.4218 | 0.2812 | |
|
| 0.7846 | 85.71 | 33000 | 0.4227 | 0.2791 | |
|
| 0.7697 | 88.31 | 34000 | 0.4200 | 0.2767 | |
|
| 0.7697 | 90.91 | 35000 | 0.4285 | 0.2791 | |
|
| 0.7539 | 93.51 | 36000 | 0.4238 | 0.2777 | |
|
| 0.7539 | 96.1 | 37000 | 0.4288 | 0.2757 | |
|
| 0.7413 | 98.7 | 38000 | 0.4205 | 0.2748 | |
|
| 0.7413 | 101.3 | 39000 | 0.4241 | 0.2761 | |
|
| 0.7348 | 103.89 | 40000 | 0.4232 | 0.2745 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.16.0.dev0 |
|
- Pytorch 1.10.1+cu102 |
|
- Datasets 1.17.1.dev0 |
|
- Tokenizers 0.11.0 |
|
|