ppo-LunarLander / config.json
lgbird's picture
ppo-LunarLander-model
99fbbe9 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bb8e4bac310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bb8e4bac3a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bb8e4bac430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bb8e4bac4c0>", "_build": "<function ActorCriticPolicy._build at 0x7bb8e4bac550>", "forward": "<function ActorCriticPolicy.forward at 0x7bb8e4bac5e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bb8e4bac670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bb8e4bac700>", "_predict": "<function ActorCriticPolicy._predict at 0x7bb8e4bac790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bb8e4bac820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bb8e4bac8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bb8e4bac940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bb8e4d41d00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1721141648008933394, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOa8sT28uZs/pPmHPv8rNL+OGRA+O6IevQAAAAAAAAAAjfgbPnrtMD6791y+0Oe9vkE5HD4zSs69AAAAAAAAAADTmik+T84sP86XDD5jPhu/sTlUPqgCCr0AAAAAAAAAABohpb1UW/E+ppD3PUs63b4V+2O9gqATPgAAAAAAAAAAAK+ivRKqVz7+SWM+IXwAv/2g8T0d9Cs9AAAAAAAAAAAAGKq8KX4gvLONfTw8RyM9eLAqvX3acD0AAIA/AACAP2CmTD5gBnY/pWIKP3eOS786IZM+zSRYPgAAAAAAAAAAgLIjPqvhJT+jW9e6x50GvznyGD5OJk28AAAAAAAAAADmDXW9zB3rPncKDj5KwwW/nT8tvJG8CD4AAAAAAAAAAJo1nrtSjmA+UtE+Pb4c1r7VzXw9QYdGvAAAAAAAAAAAMzvzu0EurrwA5Mi8vc1mPeVCmz3V8/U7AACAPwAAgD+a1ZI79tRhurLkmbOaCQUuoFa+OpDfnjMAAIA/AACAP+BNgj6WDKM+x5vJvt2UtL6P+xc+3QSTvgAAAAAAAAAAmoKLPUeUXj4RLK+9xXDVvvYChT0GvM69AAAAAAAAAACaz568rruFul3pvb5NjaC48k4AO/CyEjgAAIA/AACAP9ppdT5kSrk+tQQmv8WasL4s68k99taVvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHK7ilBQemyMAWyUS+CMAXSUR0Cuknzkp7TldX2UKGgGR0Bwzj83uNPyaAdL1GgIR0CuktQob4rSdX2UKGgGR0Bx/UX40uUVaAdL7mgIR0Cukv5zgdfcdX2UKGgGR0BvsOhGpda/aAdLwWgIR0CukwoXKr7wdX2UKGgGR0BvHjLU1AJLaAdL1GgIR0CukxQ2l2vCdX2UKGgGR0Bxzv1RLsa9aAdLyWgIR0Cuk2GHP/rCdX2UKGgGR0Bvjn3L3bmEaAdLvWgIR0Cuk6jRlYlqdX2UKGgGR0Bu6j6+FlCkaAdLxWgIR0CulDz3RG+cdX2UKGgGR0Bx0vsniNsFaAdLwmgIR0CulI0xmCiAdX2UKGgGR0ByApCMPz4DaAdL2GgIR0CulLY02tMgdX2UKGgGR0Byz7Z/Tb35aAdLwmgIR0CulYhPKuB+dX2UKGgGR0BhJ/hbW3BpaAdN6ANoCEdArpWjVawD/3V9lChoBkdAcbf7Gecx02gHS91oCEdArpXW3vx6OnV9lChoBkdAcns8x9G7SWgHS8hoCEdArpXp9Cu2Z3V9lChoBkdAcvOyKekHlmgHS9FoCEdArpX0r08NhHV9lChoBkdAc4O3pwCKaWgHS8poCEdArpZ37Hhjv3V9lChoBkdAcZQ1klNUO2gHS+toCEdArpcFGsmv4nV9lChoBkdAc3RsmfGuLmgHS+toCEdArpcYgDA8CHV9lChoBkdAcKtlenhsImgHS81oCEdArpc3ueBg/nV9lChoBkdAcMREjxCpm2gHS+NoCEdArpdIIv8IiXV9lChoBkdAbnpE9dNWVGgHS85oCEdArpfMewLVnXV9lChoBkdAcKbNAC4jKWgHS7hoCEdArpfjvgFX73V9lChoBkdAcpMlsxfv4WgHS+ZoCEdArph7/wRXfnV9lChoBkdAcWFDR+jM3mgHTW8DaAhHQK6dohoM8YB1fZQoaAZHQHKWzlYEGJNoB0vbaAhHQK6doVLzwtt1fZQoaAZHQHKBN3GGVRloB01+AWgIR0CunaroGIKudX2UKGgGR0ByGk3tKIznaAdL0GgIR0CuncUBfa6CdX2UKGgGR0ByzzLidat+aAdL22gIR0CuneA0TDfndX2UKGgGR0Bxj4hIOH32aAdLvGgIR0CuneUCq6vrdX2UKGgGR0BymE/5ckdFaAdL72gIR0Cune4YBNmEdX2UKGgGR0BxvM580DU3aAdL42gIR0Cune0/GEPEdX2UKGgGR0BwtOnzg/C7aAdLzWgIR0Cunm1OTJQtdX2UKGgGR0BzvQw5/9YPaAdL1WgIR0CunnowmE5AdX2UKGgGR0ByWkb2lEZ0aAdLzmgIR0Cuno7lq8DkdX2UKGgGR0BxfY90Rvm6aAdLw2gIR0CuntU6xPfsdX2UKGgGR0BwZIMy8BdVaAdL2GgIR0CunwO89Oh1dX2UKGgGR0BuZvos7MgVaAdL2WgIR0Cun4Y7JW/8dX2UKGgGR0Bw08NVinYQaAdLx2gIR0Cun93Cj1wpdX2UKGgGR0Bx49TrE9+xaAdLyWgIR0Cun+X1BdD6dX2UKGgGR0BzsEzj3mFKaAdLxmgIR0CuoB+YUnG9dX2UKGgGR0BhWJhWo3rEaAdN6ANoCEdArqAf8GcFyXV9lChoBkdAcxOexwAEMmgHS8ZoCEdArqAqa/h2n3V9lChoBkdAcmcRA8jiXWgHS9ZoCEdArqBJGc4HX3V9lChoBkdAcsamR/3Fk2gHS+loCEdArqBNA1Nxl3V9lChoBkdAcuj+4b0e2mgHS+doCEdArqBca4tpVXV9lChoBkdAcjFmnwXqJWgHS99oCEdArqBt0Rvm5nV9lChoBkdAcPTRp1zQu2gHS8VoCEdArqClbzK9wnV9lChoBkdAclFSFXaJymgHS8hoCEdArqC4aUA1enV9lChoBkdAbktVuJk5ImgHS81oCEdArqDYUlAu7HV9lChoBkdAcuziLVFx42gHS8toCEdArqEeqebut3V9lChoBkdAcMvphnanJmgHS8loCEdArqFAWpIcznV9lChoBkdAcnw876pHZ2gHTc4BaAhHQK6hWXfIjnp1fZQoaAZHQHMnI68xsVNoB0u4aAhHQK6hgJb+tKZ1fZQoaAZHQHJIc6aLGaRoB0u8aAhHQK6h1g0CRwJ1fZQoaAZHQHLlmQwK0D5oB0vDaAhHQK6iREF4cFR1fZQoaAZHQG/a2szVMEloB0vDaAhHQK6iWpeeFtd1fZQoaAZHQHIc9kOI68xoB0vuaAhHQK6iWte2NNt1fZQoaAZHQHIS+Ay2x6hoB0vEaAhHQK6icHPeHi51fZQoaAZHQHDf2s7uDz1oB0vgaAhHQK6ib40Mw111fZQoaAZHQHFO+cc2itdoB0vVaAhHQK6ie1uR9w51fZQoaAZHQHG/RdUsFt9oB0u+aAhHQK6ircKPXCl1fZQoaAZHQHLTvkFOfuloB00HAWgIR0CuotnWz4UOdX2UKGgGR0BxMfvE0iyIaAdLr2gIR0Cuow1iF0xNdX2UKGgGR0Bxk9DzAeq8aAdL7GgIR0CuoxRuTA32dX2UKGgGR0ByPV+PRzBAaAdL6mgIR0Cuo0MXBP9DdX2UKGgGR0ByMh5B1LamaAdL4GgIR0Cuo2xplBhQdX2UKGgGR0BxAR20Re1KaAdL0mgIR0Cuo4MkY4yXdX2UKGgGR0BwzZzBAOawaAdL1WgIR0Cuo7cwpON6dX2UKGgGR0ByR1IZqEeyaAdLtGgIR0Cuo7lwLmZFdX2UKGgGR0Bx4/RCx/utaAdLxmgIR0CupG0yP+4tdX2UKGgGR0ByfsxCY1HfaAdLxmgIR0CupIMzMzMzdX2UKGgGR0Bvx5pJwsGxaAdL12gIR0CupIpSaVlgdX2UKGgGR0Bxg5LWZqmCaAdL2mgIR0CupKjJdSl4dX2UKGgGR0Bxw0xYaHbiaAdL1mgIR0CupLMnZ00WdX2UKGgGR0Byvx/9YOlPaAdLymgIR0CupNOKGcnWdX2UKGgGR0ByOHC0ngHeaAdL+GgIR0CupSr30wrUdX2UKGgGR0BwX04iosI3aAdLxWgIR0CupT/IKc/ddX2UKGgGR0BxFyJdjXnRaAdN5gFoCEdArqVGN70Fr3V9lChoBkdAcwMZL7Gec2gHS8xoCEdArqVMf9xZMnV9lChoBkdAcyXBCUornWgHS+doCEdArqVi5LAYYXV9lChoBkdAb9IWqtHQQmgHS7loCEdArqWKzJIUanV9lChoBkdAdBGk6cRUWGgHS85oCEdArqWpr+Hae3V9lChoBkdAcKE5AQg9vGgHS7toCEdArqW/+yZ8bHV9lChoBkdAckCQfp2U0WgHS81oCEdArqXucBltj3V9lChoBkdAcn/CDmKZUmgHTQgBaAhHQK6mEsDnvDx1fZQoaAZHQHNuyTEBKcxoB0vRaAhHQK6mt0xM3611fZQoaAZHQHL1ZwCKaXtoB0vYaAhHQK6m0drftQd1fZQoaAZHQHLxlM/QjUxoB0vSaAhHQK6m3tygf2d1fZQoaAZHQHNWv2kBS1poB0vbaAhHQK6nAjUutfZ1fZQoaAZHQHHFSRKYiPhoB0vAaAhHQK6nOOxSpBJ1fZQoaAZHQHD5lVT72tdoB0vDaAhHQK6nRy7wrlN1fZQoaAZHQHLD5/kNnXdoB00LAWgIR0Cup0jrzGxVdX2UKGgGR0ByW3IwM6RyaAdL72gIR0Cup1zhxYJWdX2UKGgGR0BxcKy8jAzpaAdLymgIR0Cup3Q+EAYIdX2UKGgGR0Bxsgcjqv/zaAdLvWgIR0Cup31QhwERdX2UKGgGR0Byz9iH6/IsaAdL4WgIR0Cup3t/OMVDdX2UKGgGR0Bye/IV/MGHaAdL52gIR0Cup6OU+s5odX2UKGgGR0ByU6Ss8xKyaAdL1WgIR0Cup9IvrWy1dX2UKGgGR0BzJ68tf5UMaAdL2mgIR0Cup/NdqtYCdX2UKGgGR0Bwlvf/FR51aAdLy2gIR0Cup/t65XlsdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}