ppo-LunarLander-model
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +21 -21
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 291.62 +/- 17.03
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fedd1083b50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fedd1083be0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fedd1083c70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fedd1083d00>", "_build": "<function ActorCriticPolicy._build at 0x7fedd1083d90>", "forward": "<function ActorCriticPolicy.forward at 0x7fedd1083e20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fedd1083eb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fedd1083f40>", "_predict": "<function ActorCriticPolicy._predict at 0x7fedd1090040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fedd10900d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fedd1090160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fedd10901f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fedd10202c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1721138212443522938, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqAfr0E7qQ/0KXovnBzwL432pG828WzvQAAAAAAAAAALR9vPuPQ9j7gHqq9wBe8vvtc+z1YGtQ8AAAAAAAAAAAl8Jy+Yc2BPzJb/rxdizK+6YQhvjR5yj0AAAAAAAAAAPo7Gb6GXNU+mCNRPvG4S77kQY67rR72vQAAAAAAAAAAZr0CvQfCpz9+piW+wyyOvl2/Qr0VHB27AAAAAAAAAACz9A891PCxP/LP0T5dG1W+UgBSu8bf5T0AAAAAAAAAAKotgz7bThE/+bufvr2xO74q9XS9zMlCPQAAAAAAAAAAZuTBvHF8TrvWAjC8dhGOPCqKa7xib3Q9AACAPwAAgD/N0QM9G4DnPepNW77QFEe+Um+/var1IT0AAAAAAAAAAEYCAb6HkiM/uC7SPTP+bL4OrCs9KfedvAAAAAAAAAAAhvEavsfmYT+MCp496duDvh7puLyXy7A9AAAAAAAAAAAARLC9ICV8P+juhL0O2H6+CA12vcsSZj0AAAAAAAAAALNmEr164pM/qq7Nvf/VZb55PQq98sK/vAAAAAAAAAAAM4gjPkRCUD/1Dqy990SPvnWydT0AB+29AAAAAAAAAACAPRi9+tOpP5rKK74AwXy+dmS2vSfeyL0AAAAAAAAAAK0sA77LfLM/CbeLvkKkbL6oFTG+MucfvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIMlSwW30CMAWyUTWcBjAF0lEdAk967iADq4nV9lChoBkdAbrsF0PpY92gHTT4BaAhHQJPezT8YQ8R1fZQoaAZHQG63VqveP7xoB01HAWgIR0CT8U9uP3i8dX2UKGgGR0BwlAjlgc94aAdNNQFoCEdAk/Gcenyd4HV9lChoBkdAbsXyGSIP9WgHTWYBaAhHQJPx2/mDDj11fZQoaAZHQGGovAXVLBdoB03oA2gIR0CT8+RZEDyOdX2UKGgGR0BwyLsMRYigaAdNigFoCEdAk/Q2CNCJGnV9lChoBkdAcI1JVbRne2gHTTABaAhHQJP1KJdjXnR1fZQoaAZHQHAadLg4wRJoB00rAWgIR0CT9dJmdy1edX2UKGgGR0Bwsr0aqCHzaAdNSwFoCEdAk/YI5ggHNXV9lChoBkdAczegeRxLkGgHTV4BaAhHQJP28gLZzxR1fZQoaAZHQHHejmjj7yhoB01HAWgIR0CT9x/nGKhtdX2UKGgGR0Bwo0Lux8lYaAdNMQFoCEdAk/gEMLF4s3V9lChoBkdAcmNMBIWgvmgHTSoBaAhHQJP5NH8TBZZ1fZQoaAZHQHBwcqJ/G2loB01KAWgIR0CT+t9hqj8DdX2UKGgGR0Bvcx1klNUPaAdNSgFoCEdAk/rxhhH9WXV9lChoBkdAcF3U1yeZomgHTVsBaAhHQJP7IBRyfcx1fZQoaAZHQHJx75ZbILhoB00gAWgIR0CT+y/MnqmkdX2UKGgGR0BwQ0QI2OyWaAdNLQFoCEdAk/tRsVLzw3V9lChoBkdAcDIiqyWzGGgHTV8BaAhHQJP7VjRUm2N1fZQoaAZHQG4l3FcY64loB01DAWgIR0CT/FIOpbUxdX2UKGgGR0BxxDJA+pwTaAdNZwFoCEdAk/++HFglW3V9lChoBkdAcLQ3Hq/ucGgHTV4BaAhHQJQBFKvmozh1fZQoaAZHQG9h9Sde6ZpoB01+AWgIR0CUASTQ3PzGdX2UKGgGR0BwGgeOn2qUaAdNXwFoCEdAlAH0ZWJaaHV9lChoBkdAb20e05U96mgHTUcBaAhHQJQCb2Dg62h1fZQoaAZHQG9aw/oq0+loB01YAWgIR0CUA0RradtmdX2UKGgGR0Bt0xwGW2PUaAdNigFoCEdAlAPIxYaHbnV9lChoBkdAbnciX6ZYxWgHTV8BaAhHQJQEdonKGL11fZQoaAZHQHFN2l/H5rRoB001AWgIR0CUBkid8RcvdX2UKGgGR0BvWQePq9oOaAdNewFoCEdAlAcwxagVXXV9lChoBkdAciYYvWYnfGgHTUQBaAhHQJQHSG1x82J1fZQoaAZHQG0YUHpr1uloB01UAWgIR0CUB/mrsByTdX2UKGgGR0BvGnAuZkTYaAdNcwFoCEdAlAjd96Tnq3V9lChoBkdAcSnUA1ejVWgHTW8BaAhHQJQI7UiILw51fZQoaAZHQG+sW5QP7N1oB02GAWgIR0CUCYFGG21EdX2UKGgGR0Bva3VCojwAaAdNdAFoCEdAlAxXEqDsdHV9lChoBkdAcA83M6ij+WgHTT4BaAhHQJQOtzOoo/l1fZQoaAZHQG+olyJbdJtoB01DAWgIR0CUEIeF+NLldX2UKGgGR0BwwAV/MGHIaAdNGAFoCEdAlBEeLBKtgnV9lChoBkdAchn8gZCOWGgHTTIBaAhHQJQRVIxxkup1fZQoaAZHQG6XFr2xptdoB01aAWgIR0CUEmYOUdJbdX2UKGgGR0BtogyM1jy4aAdNeAFoCEdAlBKtDD0lJHV9lChoBkdAcjFbXYlIE2gHTUoBaAhHQJQTe83++/R1fZQoaAZHQHDfdKyv9tNoB00cAWgIR0CUE+91U2k0dX2UKGgGR0BxRJKJ2t+1aAdNSgFoCEdAlBQNlVcUunV9lChoBkdAcBkk30f5lGgHTUUBaAhHQJQV6R8twrF1fZQoaAZHQHAD6XjU/fRoB01KAWgIR0CUFrEm6XjVdX2UKGgGR0BsW0L0Bfa6aAdNYQFoCEdAlBb/3SKFZnV9lChoBkdAcjzKaoddV2gHTVABaAhHQJQpBHmRvFZ1fZQoaAZHQG9NJQUHpr1oB01aAWgIR0CUKeeP7vXtdX2UKGgGR0Bxo4Ku0TlDaAdNfQFoCEdAlCqLqlgtvnV9lChoBkdAciQrl/6O52gHTVMBaAhHQJQqzK9wm3R1fZQoaAZHQG6zWkrPMStoB00uAWgIR0CUKy0knkT6dX2UKGgGR0Brrl6PbO/taAdNQQFoCEdAlC2IJ3PiUHV9lChoBkdAcSKVzp5eJGgHTWoBaAhHQJQumA2AG0N1fZQoaAZHQHEzIPTXrdFoB003AWgIR0CUL4v0AcT8dX2UKGgGR0BuAc7U5MlDaAdNZgFoCEdAlDALvkRzzXV9lChoBkdAcNWFc6eXiWgHTV8BaAhHQJQwHcDbJwN1fZQoaAZHQGyNRfF72L5oB02NAWgIR0CUMHHc1wYMdX2UKGgGR0By47mozeoDaAdNVQFoCEdAlDERx5s0pHV9lChoBkdAcOiVTrE9+2gHTXABaAhHQJQyHcRDkU91fZQoaAZHQHCZvldTo+xoB01MAWgIR0CUNANZeRgadX2UKGgGR0BwDUl2NedDaAdNSAFoCEdAlDSShJyyU3V9lChoBkdAcLfY4yXUpmgHTUABaAhHQJQ1X6rNnoR1fZQoaAZHQHGPcHObAk9oB014AWgIR0CUNX91loUSdX2UKGgGR0BryNqBVdX1aAdNkgFoCEdAlDWmLgn+h3V9lChoBkdAcOVal1r6+GgHTT4BaAhHQJQ1/rIHTql1fZQoaAZHQHAUZkCmuT1oB00tAWgIR0CUNhUi6g/UdX2UKGgGR0BwAW39aUzLaAdNYwFoCEdAlDdWlMyrP3V9lChoBkdAbPYD7Ikqt2gHTVYBaAhHQJQ5nvqkdmx1fZQoaAZHQGyATreIl+poB00mAWgIR0CUOoWLP2PDdX2UKGgGR0BxtcDvE0iyaAdNMgFoCEdAlDs0lJHy3HV9lChoBkdAcDP9eQdS22gHTXsBaAhHQJQ88Fpwjt51fZQoaAZHQHHXJDiOvMdoB01LAWgIR0CUPRIFeOXFdX2UKGgGR0BweaArhBJJaAdNfQFoCEdAlD5B7qptJnV9lChoBkdAbHfU8V58jWgHTWYBaAhHQJQ/eQCCBf91fZQoaAZHQG14VTrE9+xoB01SAWgIR0CUQAQtSQ5ndX2UKGgGR0BwDcYtQKrraAdNOQFoCEdAlEE6iblRxnV9lChoBkdAcnDoysS00GgHTTgBaAhHQJRCzMPjGT91fZQoaAZHQG5Zjin5zo5oB01PAWgIR0CUQvhY/3WXdX2UKGgGR0BtGKGxlg+haAdNPwFoCEdAlENxhMJyAHV9lChoBkdAcApVaOgg5mgHTTUBaAhHQJRDkLJCBwx1fZQoaAZHQHFmdTYNAkdoB01PAWgIR0CUQ+vcJtzkdX2UKGgGR0BxDpRFZxJeaAdNYQFoCEdAlEU1rylN13V9lChoBkdAcdrUN8VpK2gHTYcBaAhHQJRIAqtozvZ1fZQoaAZHQGzrxqwhW5poB01KAWgIR0CUSD5ckdFOdX2UKGgGR0Bx6RhiLEUCaAdNLQFoCEdAlEmoYJmdy3V9lChoBkdAalcDg62fCmgHTW8BaAhHQJRKSYOUdJd1fZQoaAZHQHG47sOXmeVoB01MAWgIR0CUS7MYuTRqdX2UKGgGR0BtVko0ALiNaAdNNQFoCEdAlEutD2Jzk3V9lChoBkdAcBAo/RmbsmgHTZYBaAhHQJRMNzfaYeF1fZQoaAZHQHFZI+bExZdoB02GAWgIR0CUTM8F6iTMdX2UKGgGR0ByPBnTRYzSaAdNPgFoCEdAlE01klNUO3V9lChoBkdAbqWZR8+iamgHTSkBaAhHQJROG4YrJ8x1fZQoaAZHQG+aGl67dzpoB008AWgIR0CUTizw+dK/dX2UKGgGR0BywPkJa7mMaAdNNAFoCEdAlE66iTMaCXV9lChoBkdAcGjk3CKrJmgHTYcBaAhHQJROvwWnCO51fZQoaAZHQHCZ/LX+VC5oB01SAWgIR0CUTvHq/ub7dX2UKGgGR0ByhSXZ5AyEaAdNTAFoCEdAlE8KpYLb6HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bb8e4bac310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bb8e4bac3a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bb8e4bac430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bb8e4bac4c0>", "_build": "<function ActorCriticPolicy._build at 0x7bb8e4bac550>", "forward": "<function ActorCriticPolicy.forward at 0x7bb8e4bac5e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bb8e4bac670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bb8e4bac700>", "_predict": "<function ActorCriticPolicy._predict at 0x7bb8e4bac790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bb8e4bac820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bb8e4bac8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bb8e4bac940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bb8e4d41d00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1721141648008933394, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOa8sT28uZs/pPmHPv8rNL+OGRA+O6IevQAAAAAAAAAAjfgbPnrtMD6791y+0Oe9vkE5HD4zSs69AAAAAAAAAADTmik+T84sP86XDD5jPhu/sTlUPqgCCr0AAAAAAAAAABohpb1UW/E+ppD3PUs63b4V+2O9gqATPgAAAAAAAAAAAK+ivRKqVz7+SWM+IXwAv/2g8T0d9Cs9AAAAAAAAAAAAGKq8KX4gvLONfTw8RyM9eLAqvX3acD0AAIA/AACAP2CmTD5gBnY/pWIKP3eOS786IZM+zSRYPgAAAAAAAAAAgLIjPqvhJT+jW9e6x50GvznyGD5OJk28AAAAAAAAAADmDXW9zB3rPncKDj5KwwW/nT8tvJG8CD4AAAAAAAAAAJo1nrtSjmA+UtE+Pb4c1r7VzXw9QYdGvAAAAAAAAAAAMzvzu0EurrwA5Mi8vc1mPeVCmz3V8/U7AACAPwAAgD+a1ZI79tRhurLkmbOaCQUuoFa+OpDfnjMAAIA/AACAP+BNgj6WDKM+x5vJvt2UtL6P+xc+3QSTvgAAAAAAAAAAmoKLPUeUXj4RLK+9xXDVvvYChT0GvM69AAAAAAAAAACaz568rruFul3pvb5NjaC48k4AO/CyEjgAAIA/AACAP9ppdT5kSrk+tQQmv8WasL4s68k99taVvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHK7ilBQemyMAWyUS+CMAXSUR0Cuknzkp7TldX2UKGgGR0Bwzj83uNPyaAdL1GgIR0CuktQob4rSdX2UKGgGR0Bx/UX40uUVaAdL7mgIR0Cukv5zgdfcdX2UKGgGR0BvsOhGpda/aAdLwWgIR0CukwoXKr7wdX2UKGgGR0BvHjLU1AJLaAdL1GgIR0CukxQ2l2vCdX2UKGgGR0Bxzv1RLsa9aAdLyWgIR0Cuk2GHP/rCdX2UKGgGR0Bvjn3L3bmEaAdLvWgIR0Cuk6jRlYlqdX2UKGgGR0Bu6j6+FlCkaAdLxWgIR0CulDz3RG+cdX2UKGgGR0Bx0vsniNsFaAdLwmgIR0CulI0xmCiAdX2UKGgGR0ByApCMPz4DaAdL2GgIR0CulLY02tMgdX2UKGgGR0Byz7Z/Tb35aAdLwmgIR0CulYhPKuB+dX2UKGgGR0BhJ/hbW3BpaAdN6ANoCEdArpWjVawD/3V9lChoBkdAcbf7Gecx02gHS91oCEdArpXW3vx6OnV9lChoBkdAcns8x9G7SWgHS8hoCEdArpXp9Cu2Z3V9lChoBkdAcvOyKekHlmgHS9FoCEdArpX0r08NhHV9lChoBkdAc4O3pwCKaWgHS8poCEdArpZ37Hhjv3V9lChoBkdAcZQ1klNUO2gHS+toCEdArpcFGsmv4nV9lChoBkdAc3RsmfGuLmgHS+toCEdArpcYgDA8CHV9lChoBkdAcKtlenhsImgHS81oCEdArpc3ueBg/nV9lChoBkdAcMREjxCpm2gHS+NoCEdArpdIIv8IiXV9lChoBkdAbnpE9dNWVGgHS85oCEdArpfMewLVnXV9lChoBkdAcKbNAC4jKWgHS7hoCEdArpfjvgFX73V9lChoBkdAcpMlsxfv4WgHS+ZoCEdArph7/wRXfnV9lChoBkdAcWFDR+jM3mgHTW8DaAhHQK6dohoM8YB1fZQoaAZHQHKWzlYEGJNoB0vbaAhHQK6doVLzwtt1fZQoaAZHQHKBN3GGVRloB01+AWgIR0CunaroGIKudX2UKGgGR0ByGk3tKIznaAdL0GgIR0CuncUBfa6CdX2UKGgGR0ByzzLidat+aAdL22gIR0CuneA0TDfndX2UKGgGR0Bxj4hIOH32aAdLvGgIR0CuneUCq6vrdX2UKGgGR0BymE/5ckdFaAdL72gIR0Cune4YBNmEdX2UKGgGR0BxvM580DU3aAdL42gIR0Cune0/GEPEdX2UKGgGR0BwtOnzg/C7aAdLzWgIR0Cunm1OTJQtdX2UKGgGR0BzvQw5/9YPaAdL1WgIR0CunnowmE5AdX2UKGgGR0ByWkb2lEZ0aAdLzmgIR0Cuno7lq8DkdX2UKGgGR0BxfY90Rvm6aAdLw2gIR0CuntU6xPfsdX2UKGgGR0BwZIMy8BdVaAdL2GgIR0CunwO89Oh1dX2UKGgGR0BuZvos7MgVaAdL2WgIR0Cun4Y7JW/8dX2UKGgGR0Bw08NVinYQaAdLx2gIR0Cun93Cj1wpdX2UKGgGR0Bx49TrE9+xaAdLyWgIR0Cun+X1BdD6dX2UKGgGR0BzsEzj3mFKaAdLxmgIR0CuoB+YUnG9dX2UKGgGR0BhWJhWo3rEaAdN6ANoCEdArqAf8GcFyXV9lChoBkdAcxOexwAEMmgHS8ZoCEdArqAqa/h2n3V9lChoBkdAcmcRA8jiXWgHS9ZoCEdArqBJGc4HX3V9lChoBkdAcsamR/3Fk2gHS+loCEdArqBNA1Nxl3V9lChoBkdAcuj+4b0e2mgHS+doCEdArqBca4tpVXV9lChoBkdAcjFmnwXqJWgHS99oCEdArqBt0Rvm5nV9lChoBkdAcPTRp1zQu2gHS8VoCEdArqClbzK9wnV9lChoBkdAclFSFXaJymgHS8hoCEdArqC4aUA1enV9lChoBkdAbktVuJk5ImgHS81oCEdArqDYUlAu7HV9lChoBkdAcuziLVFx42gHS8toCEdArqEeqebut3V9lChoBkdAcMvphnanJmgHS8loCEdArqFAWpIcznV9lChoBkdAcnw876pHZ2gHTc4BaAhHQK6hWXfIjnp1fZQoaAZHQHMnI68xsVNoB0u4aAhHQK6hgJb+tKZ1fZQoaAZHQHJIc6aLGaRoB0u8aAhHQK6h1g0CRwJ1fZQoaAZHQHLlmQwK0D5oB0vDaAhHQK6iREF4cFR1fZQoaAZHQG/a2szVMEloB0vDaAhHQK6iWpeeFtd1fZQoaAZHQHIc9kOI68xoB0vuaAhHQK6iWte2NNt1fZQoaAZHQHIS+Ay2x6hoB0vEaAhHQK6icHPeHi51fZQoaAZHQHDf2s7uDz1oB0vgaAhHQK6ib40Mw111fZQoaAZHQHFO+cc2itdoB0vVaAhHQK6ie1uR9w51fZQoaAZHQHG/RdUsFt9oB0u+aAhHQK6ircKPXCl1fZQoaAZHQHLTvkFOfuloB00HAWgIR0CuotnWz4UOdX2UKGgGR0BxMfvE0iyIaAdLr2gIR0Cuow1iF0xNdX2UKGgGR0Bxk9DzAeq8aAdL7GgIR0CuoxRuTA32dX2UKGgGR0ByPV+PRzBAaAdL6mgIR0Cuo0MXBP9DdX2UKGgGR0ByMh5B1LamaAdL4GgIR0Cuo2xplBhQdX2UKGgGR0BxAR20Re1KaAdL0mgIR0Cuo4MkY4yXdX2UKGgGR0BwzZzBAOawaAdL1WgIR0Cuo7cwpON6dX2UKGgGR0ByR1IZqEeyaAdLtGgIR0Cuo7lwLmZFdX2UKGgGR0Bx4/RCx/utaAdLxmgIR0CupG0yP+4tdX2UKGgGR0ByfsxCY1HfaAdLxmgIR0CupIMzMzMzdX2UKGgGR0Bvx5pJwsGxaAdL12gIR0CupIpSaVlgdX2UKGgGR0Bxg5LWZqmCaAdL2mgIR0CupKjJdSl4dX2UKGgGR0Bxw0xYaHbiaAdL1mgIR0CupLMnZ00WdX2UKGgGR0Byvx/9YOlPaAdLymgIR0CupNOKGcnWdX2UKGgGR0ByOHC0ngHeaAdL+GgIR0CupSr30wrUdX2UKGgGR0BwX04iosI3aAdLxWgIR0CupT/IKc/ddX2UKGgGR0BxFyJdjXnRaAdN5gFoCEdArqVGN70Fr3V9lChoBkdAcwMZL7Gec2gHS8xoCEdArqVMf9xZMnV9lChoBkdAcyXBCUornWgHS+doCEdArqVi5LAYYXV9lChoBkdAb9IWqtHQQmgHS7loCEdArqWKzJIUanV9lChoBkdAdBGk6cRUWGgHS85oCEdArqWpr+Hae3V9lChoBkdAcKE5AQg9vGgHS7toCEdArqW/+yZ8bHV9lChoBkdAckCQfp2U0WgHS81oCEdArqXucBltj3V9lChoBkdAcn/CDmKZUmgHTQgBaAhHQK6mEsDnvDx1fZQoaAZHQHNuyTEBKcxoB0vRaAhHQK6mt0xM3611fZQoaAZHQHL1ZwCKaXtoB0vYaAhHQK6m0drftQd1fZQoaAZHQHLxlM/QjUxoB0vSaAhHQK6m3tygf2d1fZQoaAZHQHNWv2kBS1poB0vbaAhHQK6nAjUutfZ1fZQoaAZHQHHFSRKYiPhoB0vAaAhHQK6nOOxSpBJ1fZQoaAZHQHD5lVT72tdoB0vDaAhHQK6nRy7wrlN1fZQoaAZHQHLD5/kNnXdoB00LAWgIR0Cup0jrzGxVdX2UKGgGR0ByW3IwM6RyaAdL72gIR0Cup1zhxYJWdX2UKGgGR0BxcKy8jAzpaAdLymgIR0Cup3Q+EAYIdX2UKGgGR0Bxsgcjqv/zaAdLvWgIR0Cup31QhwERdX2UKGgGR0Byz9iH6/IsaAdL4WgIR0Cup3t/OMVDdX2UKGgGR0Bye/IV/MGHaAdL52gIR0Cup6OU+s5odX2UKGgGR0ByU6Ss8xKyaAdL1WgIR0Cup9IvrWy1dX2UKGgGR0BzJ68tf5UMaAdL2mgIR0Cup/NdqtYCdX2UKGgGR0Bwlvf/FR51aAdLy2gIR0Cup/t65XlsdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9d6a67673c60a2bac6df73ff27b74caaa80f901b88e81b363965ad8f652cbd4
|
3 |
+
size 147967
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -41,17 +41,17 @@
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -83,7 +83,7 @@
|
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
-
"batch_size":
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7bb8e4bac310>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bb8e4bac3a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bb8e4bac430>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bb8e4bac4c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7bb8e4bac550>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7bb8e4bac5e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7bb8e4bac670>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bb8e4bac700>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7bb8e4bac790>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bb8e4bac820>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bb8e4bac8b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7bb8e4bac940>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7bb8e4d41d00>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 5013504,
|
25 |
+
"_total_timesteps": 5000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1721141648008933394,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOa8sT28uZs/pPmHPv8rNL+OGRA+O6IevQAAAAAAAAAAjfgbPnrtMD6791y+0Oe9vkE5HD4zSs69AAAAAAAAAADTmik+T84sP86XDD5jPhu/sTlUPqgCCr0AAAAAAAAAABohpb1UW/E+ppD3PUs63b4V+2O9gqATPgAAAAAAAAAAAK+ivRKqVz7+SWM+IXwAv/2g8T0d9Cs9AAAAAAAAAAAAGKq8KX4gvLONfTw8RyM9eLAqvX3acD0AAIA/AACAP2CmTD5gBnY/pWIKP3eOS786IZM+zSRYPgAAAAAAAAAAgLIjPqvhJT+jW9e6x50GvznyGD5OJk28AAAAAAAAAADmDXW9zB3rPncKDj5KwwW/nT8tvJG8CD4AAAAAAAAAAJo1nrtSjmA+UtE+Pb4c1r7VzXw9QYdGvAAAAAAAAAAAMzvzu0EurrwA5Mi8vc1mPeVCmz3V8/U7AACAPwAAgD+a1ZI79tRhurLkmbOaCQUuoFa+OpDfnjMAAIA/AACAP+BNgj6WDKM+x5vJvt2UtL6P+xc+3QSTvgAAAAAAAAAAmoKLPUeUXj4RLK+9xXDVvvYChT0GvM69AAAAAAAAAACaz568rruFul3pvb5NjaC48k4AO/CyEjgAAIA/AACAP9ppdT5kSrk+tQQmv8WasL4s68k99taVvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHK7ilBQemyMAWyUS+CMAXSUR0Cuknzkp7TldX2UKGgGR0Bwzj83uNPyaAdL1GgIR0CuktQob4rSdX2UKGgGR0Bx/UX40uUVaAdL7mgIR0Cukv5zgdfcdX2UKGgGR0BvsOhGpda/aAdLwWgIR0CukwoXKr7wdX2UKGgGR0BvHjLU1AJLaAdL1GgIR0CukxQ2l2vCdX2UKGgGR0Bxzv1RLsa9aAdLyWgIR0Cuk2GHP/rCdX2UKGgGR0Bvjn3L3bmEaAdLvWgIR0Cuk6jRlYlqdX2UKGgGR0Bu6j6+FlCkaAdLxWgIR0CulDz3RG+cdX2UKGgGR0Bx0vsniNsFaAdLwmgIR0CulI0xmCiAdX2UKGgGR0ByApCMPz4DaAdL2GgIR0CulLY02tMgdX2UKGgGR0Byz7Z/Tb35aAdLwmgIR0CulYhPKuB+dX2UKGgGR0BhJ/hbW3BpaAdN6ANoCEdArpWjVawD/3V9lChoBkdAcbf7Gecx02gHS91oCEdArpXW3vx6OnV9lChoBkdAcns8x9G7SWgHS8hoCEdArpXp9Cu2Z3V9lChoBkdAcvOyKekHlmgHS9FoCEdArpX0r08NhHV9lChoBkdAc4O3pwCKaWgHS8poCEdArpZ37Hhjv3V9lChoBkdAcZQ1klNUO2gHS+toCEdArpcFGsmv4nV9lChoBkdAc3RsmfGuLmgHS+toCEdArpcYgDA8CHV9lChoBkdAcKtlenhsImgHS81oCEdArpc3ueBg/nV9lChoBkdAcMREjxCpm2gHS+NoCEdArpdIIv8IiXV9lChoBkdAbnpE9dNWVGgHS85oCEdArpfMewLVnXV9lChoBkdAcKbNAC4jKWgHS7hoCEdArpfjvgFX73V9lChoBkdAcpMlsxfv4WgHS+ZoCEdArph7/wRXfnV9lChoBkdAcWFDR+jM3mgHTW8DaAhHQK6dohoM8YB1fZQoaAZHQHKWzlYEGJNoB0vbaAhHQK6doVLzwtt1fZQoaAZHQHKBN3GGVRloB01+AWgIR0CunaroGIKudX2UKGgGR0ByGk3tKIznaAdL0GgIR0CuncUBfa6CdX2UKGgGR0ByzzLidat+aAdL22gIR0CuneA0TDfndX2UKGgGR0Bxj4hIOH32aAdLvGgIR0CuneUCq6vrdX2UKGgGR0BymE/5ckdFaAdL72gIR0Cune4YBNmEdX2UKGgGR0BxvM580DU3aAdL42gIR0Cune0/GEPEdX2UKGgGR0BwtOnzg/C7aAdLzWgIR0Cunm1OTJQtdX2UKGgGR0BzvQw5/9YPaAdL1WgIR0CunnowmE5AdX2UKGgGR0ByWkb2lEZ0aAdLzmgIR0Cuno7lq8DkdX2UKGgGR0BxfY90Rvm6aAdLw2gIR0CuntU6xPfsdX2UKGgGR0BwZIMy8BdVaAdL2GgIR0CunwO89Oh1dX2UKGgGR0BuZvos7MgVaAdL2WgIR0Cun4Y7JW/8dX2UKGgGR0Bw08NVinYQaAdLx2gIR0Cun93Cj1wpdX2UKGgGR0Bx49TrE9+xaAdLyWgIR0Cun+X1BdD6dX2UKGgGR0BzsEzj3mFKaAdLxmgIR0CuoB+YUnG9dX2UKGgGR0BhWJhWo3rEaAdN6ANoCEdArqAf8GcFyXV9lChoBkdAcxOexwAEMmgHS8ZoCEdArqAqa/h2n3V9lChoBkdAcmcRA8jiXWgHS9ZoCEdArqBJGc4HX3V9lChoBkdAcsamR/3Fk2gHS+loCEdArqBNA1Nxl3V9lChoBkdAcuj+4b0e2mgHS+doCEdArqBca4tpVXV9lChoBkdAcjFmnwXqJWgHS99oCEdArqBt0Rvm5nV9lChoBkdAcPTRp1zQu2gHS8VoCEdArqClbzK9wnV9lChoBkdAclFSFXaJymgHS8hoCEdArqC4aUA1enV9lChoBkdAbktVuJk5ImgHS81oCEdArqDYUlAu7HV9lChoBkdAcuziLVFx42gHS8toCEdArqEeqebut3V9lChoBkdAcMvphnanJmgHS8loCEdArqFAWpIcznV9lChoBkdAcnw876pHZ2gHTc4BaAhHQK6hWXfIjnp1fZQoaAZHQHMnI68xsVNoB0u4aAhHQK6hgJb+tKZ1fZQoaAZHQHJIc6aLGaRoB0u8aAhHQK6h1g0CRwJ1fZQoaAZHQHLlmQwK0D5oB0vDaAhHQK6iREF4cFR1fZQoaAZHQG/a2szVMEloB0vDaAhHQK6iWpeeFtd1fZQoaAZHQHIc9kOI68xoB0vuaAhHQK6iWte2NNt1fZQoaAZHQHIS+Ay2x6hoB0vEaAhHQK6icHPeHi51fZQoaAZHQHDf2s7uDz1oB0vgaAhHQK6ib40Mw111fZQoaAZHQHFO+cc2itdoB0vVaAhHQK6ie1uR9w51fZQoaAZHQHG/RdUsFt9oB0u+aAhHQK6ircKPXCl1fZQoaAZHQHLTvkFOfuloB00HAWgIR0CuotnWz4UOdX2UKGgGR0BxMfvE0iyIaAdLr2gIR0Cuow1iF0xNdX2UKGgGR0Bxk9DzAeq8aAdL7GgIR0CuoxRuTA32dX2UKGgGR0ByPV+PRzBAaAdL6mgIR0Cuo0MXBP9DdX2UKGgGR0ByMh5B1LamaAdL4GgIR0Cuo2xplBhQdX2UKGgGR0BxAR20Re1KaAdL0mgIR0Cuo4MkY4yXdX2UKGgGR0BwzZzBAOawaAdL1WgIR0Cuo7cwpON6dX2UKGgGR0ByR1IZqEeyaAdLtGgIR0Cuo7lwLmZFdX2UKGgGR0Bx4/RCx/utaAdLxmgIR0CupG0yP+4tdX2UKGgGR0ByfsxCY1HfaAdLxmgIR0CupIMzMzMzdX2UKGgGR0Bvx5pJwsGxaAdL12gIR0CupIpSaVlgdX2UKGgGR0Bxg5LWZqmCaAdL2mgIR0CupKjJdSl4dX2UKGgGR0Bxw0xYaHbiaAdL1mgIR0CupLMnZ00WdX2UKGgGR0Byvx/9YOlPaAdLymgIR0CupNOKGcnWdX2UKGgGR0ByOHC0ngHeaAdL+GgIR0CupSr30wrUdX2UKGgGR0BwX04iosI3aAdLxWgIR0CupT/IKc/ddX2UKGgGR0BxFyJdjXnRaAdN5gFoCEdArqVGN70Fr3V9lChoBkdAcwMZL7Gec2gHS8xoCEdArqVMf9xZMnV9lChoBkdAcyXBCUornWgHS+doCEdArqVi5LAYYXV9lChoBkdAb9IWqtHQQmgHS7loCEdArqWKzJIUanV9lChoBkdAdBGk6cRUWGgHS85oCEdArqWpr+Hae3V9lChoBkdAcKE5AQg9vGgHS7toCEdArqW/+yZ8bHV9lChoBkdAckCQfp2U0WgHS81oCEdArqXucBltj3V9lChoBkdAcn/CDmKZUmgHTQgBaAhHQK6mEsDnvDx1fZQoaAZHQHNuyTEBKcxoB0vRaAhHQK6mt0xM3611fZQoaAZHQHL1ZwCKaXtoB0vYaAhHQK6m0drftQd1fZQoaAZHQHLxlM/QjUxoB0vSaAhHQK6m3tygf2d1fZQoaAZHQHNWv2kBS1poB0vbaAhHQK6nAjUutfZ1fZQoaAZHQHHFSRKYiPhoB0vAaAhHQK6nOOxSpBJ1fZQoaAZHQHD5lVT72tdoB0vDaAhHQK6nRy7wrlN1fZQoaAZHQHLD5/kNnXdoB00LAWgIR0Cup0jrzGxVdX2UKGgGR0ByW3IwM6RyaAdL72gIR0Cup1zhxYJWdX2UKGgGR0BxcKy8jAzpaAdLymgIR0Cup3Q+EAYIdX2UKGgGR0Bxsgcjqv/zaAdLvWgIR0Cup31QhwERdX2UKGgGR0Byz9iH6/IsaAdL4WgIR0Cup3t/OMVDdX2UKGgGR0Bye/IV/MGHaAdL52gIR0Cup6OU+s5odX2UKGgGR0ByU6Ss8xKyaAdL1WgIR0Cup9IvrWy1dX2UKGgGR0BzJ68tf5UMaAdL2mgIR0Cup/NdqtYCdX2UKGgGR0Bwlvf/FR51aAdLy2gIR0Cup/t65XlsdWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 1224,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 128,
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ceb696e2fee61f9188aceb305010a79fa5813faa84244832e94e4fea9a1932c
|
3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df6ee2797205ac99a2980fc14c3c67b1029824e45dad0ce2e8c969d023786591
|
3 |
size 43762
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 291.6199429, "std_reward": 17.030408128434782, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-07-16T15:58:52.909978"}
|