See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/CodeLlama-13b-hf-flash
bf16: true
chat_template: llama3
datasets:
- data_files:
- a3015cc60778e4f4_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/a3015cc60778e4f4_train_data.json
type:
field_instruction: qa_pair
field_output: document
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso11/c6b43e65-cebe-4175-8430-8070563f6726
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/a3015cc60778e4f4_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: c6b43e65-cebe-4175-8430-8070563f6726
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c6b43e65-cebe-4175-8430-8070563f6726
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false
c6b43e65-cebe-4175-8430-8070563f6726
This model is a fine-tuned version of NousResearch/CodeLlama-13b-hf-flash on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2068
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.9329 | 0.0036 | 1 | 1.4070 |
2.8584 | 0.0328 | 9 | 1.3745 |
2.4668 | 0.0656 | 18 | 1.2811 |
2.7431 | 0.0984 | 27 | 1.2466 |
2.3617 | 0.1311 | 36 | 1.2316 |
2.4849 | 0.1639 | 45 | 1.2238 |
2.8232 | 0.1967 | 54 | 1.2164 |
2.2367 | 0.2295 | 63 | 1.2125 |
2.3174 | 0.2623 | 72 | 1.2095 |
2.4321 | 0.2951 | 81 | 1.2079 |
2.7978 | 0.3279 | 90 | 1.2071 |
2.6006 | 0.3607 | 99 | 1.2068 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Model tree for lesso11/c6b43e65-cebe-4175-8430-8070563f6726
Base model
NousResearch/CodeLlama-13b-hf-flash