See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: numind/NuExtract-v1.5
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- e68846169b35e5f6_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e68846169b35e5f6_train_data.json
type:
field_instruction: sentence1
field_output: sentence2
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 500
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso07/4f0bc850-8791-4641-9ae4-1a1482df5a4d
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000207
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 128
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2000
micro_batch_size: 4
mlflow_experiment_name: /tmp/e68846169b35e5f6_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 500
saves_per_epoch: null
seed: 70
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: a0005394-e920-4131-be48-b15d92c3c32d
wandb_project: 07a
wandb_run: your_name
wandb_runid: a0005394-e920-4131-be48-b15d92c3c32d
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null
4f0bc850-8791-4641-9ae4-1a1482df5a4d
This model is a fine-tuned version of numind/NuExtract-v1.5 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8201
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000207
- train_batch_size: 4
- eval_batch_size: 4
- seed: 70
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 2000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0004 | 1 | 3.5961 |
8.123 | 0.1914 | 500 | 1.0323 |
7.3353 | 0.3829 | 1000 | 0.9058 |
6.8517 | 0.5743 | 1500 | 0.8326 |
6.6975 | 0.7657 | 2000 | 0.8201 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.