Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: fxmarty/tiny-llama-fast-tokenizer
bf16: true
chat_template: llama3
datasets:
- data_files:
  - b88155c385ea165a_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/b88155c385ea165a_train_data.json
  type:
    field_instruction: question
    field_output: reponses
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso05/530799de-0d58-401f-b489-6803bff65c90
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 2.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/b88155c385ea165a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 92a1cd3e-471f-481a-aa73-6c496dcf52e3
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 92a1cd3e-471f-481a-aa73-6c496dcf52e3
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false

530799de-0d58-401f-b489-6803bff65c90

This model is a fine-tuned version of fxmarty/tiny-llama-fast-tokenizer on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.3776

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
10.3766 0.0001 1 10.3783
10.3782 0.0006 9 10.3782
10.3765 0.0012 18 10.3781
10.3808 0.0017 27 10.3780
10.3776 0.0023 36 10.3779
10.3777 0.0029 45 10.3778
10.3748 0.0035 54 10.3777
10.3784 0.0041 63 10.3777
10.3771 0.0046 72 10.3777
10.3768 0.0052 81 10.3776
10.3775 0.0058 90 10.3776
10.3775 0.0064 99 10.3776

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
10
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for lesso05/530799de-0d58-401f-b489-6803bff65c90

Adapter
(136)
this model