metadata
license: mit
base_model: microsoft/git-base
tags:
- generated_from_trainer
model-index:
- name: git-base-floors615images
results: []
git-base-floors615images
This model is a fine-tuned version of microsoft/git-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0139
- Wer Score: 0.5837
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Score |
---|---|---|---|---|
6.955 | 0.72 | 50 | 4.0586 | 1.6636 |
1.911 | 1.44 | 100 | 0.2120 | 3.1636 |
0.0574 | 2.16 | 150 | 0.0130 | 4.5642 |
0.0118 | 2.88 | 200 | 0.0126 | 2.8213 |
0.0099 | 3.6 | 250 | 0.0095 | 2.2693 |
0.0082 | 4.32 | 300 | 0.0089 | 5.0186 |
0.0077 | 5.04 | 350 | 0.0088 | 5.3560 |
0.0068 | 5.76 | 400 | 0.0091 | 2.8026 |
0.0064 | 6.47 | 450 | 0.0082 | 3.4589 |
0.0063 | 7.19 | 500 | 0.0086 | 4.6660 |
0.006 | 7.91 | 550 | 0.0082 | 4.8546 |
0.0056 | 8.63 | 600 | 0.0085 | 3.1033 |
0.0062 | 9.35 | 650 | 0.0087 | 4.0475 |
0.0057 | 10.07 | 700 | 0.0086 | 5.4452 |
0.0054 | 10.79 | 750 | 0.0084 | 4.8614 |
0.0056 | 11.51 | 800 | 0.0084 | 5.4922 |
0.005 | 12.23 | 850 | 0.0084 | 5.4324 |
0.0054 | 12.95 | 900 | 0.0083 | 5.6768 |
0.0051 | 13.67 | 950 | 0.0086 | 5.1234 |
0.0052 | 14.39 | 1000 | 0.0091 | 6.0069 |
0.0053 | 15.11 | 1050 | 0.0085 | 5.0867 |
0.0049 | 15.83 | 1100 | 0.0092 | 5.4711 |
0.0051 | 16.55 | 1150 | 0.0087 | 5.7106 |
0.0048 | 17.27 | 1200 | 0.0086 | 4.0867 |
0.0047 | 17.99 | 1250 | 0.0087 | 5.0113 |
0.0048 | 18.71 | 1300 | 0.0088 | 5.9662 |
0.0046 | 19.42 | 1350 | 0.0091 | 4.5553 |
0.005 | 20.14 | 1400 | 0.0088 | 6.0235 |
0.0054 | 20.86 | 1450 | 0.0085 | 6.0230 |
0.005 | 21.58 | 1500 | 0.0088 | 6.0230 |
0.0052 | 22.3 | 1550 | 0.0084 | 6.0186 |
0.0049 | 23.02 | 1600 | 0.0093 | 3.9496 |
0.005 | 23.74 | 1650 | 0.0089 | 3.9275 |
0.0046 | 24.46 | 1700 | 0.0085 | 4.7311 |
0.0049 | 25.18 | 1750 | 0.0089 | 5.2463 |
0.0045 | 25.9 | 1800 | 0.0088 | 3.8296 |
0.0044 | 26.62 | 1850 | 0.0088 | 4.5010 |
0.0043 | 27.34 | 1900 | 0.0090 | 2.7282 |
0.0045 | 28.06 | 1950 | 0.0089 | 3.4383 |
0.0038 | 28.78 | 2000 | 0.0094 | 1.3452 |
0.0042 | 29.5 | 2050 | 0.0089 | 3.1126 |
0.0039 | 30.22 | 2100 | 0.0092 | 2.4177 |
0.0042 | 30.94 | 2150 | 0.0092 | 2.7204 |
0.0037 | 31.65 | 2200 | 0.0092 | 2.6229 |
0.0039 | 32.37 | 2250 | 0.0095 | 2.3673 |
0.0038 | 33.09 | 2300 | 0.0102 | 1.4265 |
0.0034 | 33.81 | 2350 | 0.0098 | 2.4819 |
0.0032 | 34.53 | 2400 | 0.0110 | 1.9114 |
0.0034 | 35.25 | 2450 | 0.0111 | 1.4285 |
0.0031 | 35.97 | 2500 | 0.0108 | 2.0573 |
0.0027 | 36.69 | 2550 | 0.0109 | 1.6538 |
0.0028 | 37.41 | 2600 | 0.0114 | 1.9789 |
0.0029 | 38.13 | 2650 | 0.0108 | 2.1675 |
0.0026 | 38.85 | 2700 | 0.0112 | 2.3497 |
0.0026 | 39.57 | 2750 | 0.0124 | 2.1665 |
0.0026 | 40.29 | 2800 | 0.0119 | 1.4652 |
0.0024 | 41.01 | 2850 | 0.0119 | 2.0720 |
0.0022 | 41.73 | 2900 | 0.0122 | 1.2238 |
0.0022 | 42.45 | 2950 | 0.0128 | 1.5343 |
0.0021 | 43.17 | 3000 | 0.0121 | 1.3310 |
0.0019 | 43.88 | 3050 | 0.0131 | 1.3859 |
0.0018 | 44.6 | 3100 | 0.0131 | 0.8487 |
0.0017 | 45.32 | 3150 | 0.0133 | 0.9540 |
0.0016 | 46.04 | 3200 | 0.0131 | 1.0446 |
0.0014 | 46.76 | 3250 | 0.0135 | 0.6459 |
0.0014 | 47.48 | 3300 | 0.0137 | 0.6562 |
0.0013 | 48.2 | 3350 | 0.0135 | 0.5901 |
0.0012 | 48.92 | 3400 | 0.0139 | 0.5857 |
0.0012 | 49.64 | 3450 | 0.0139 | 0.5837 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.0.1
- Datasets 2.18.0
- Tokenizers 0.15.2