See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: defog/llama-3-sqlcoder-8b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 9a795b17b199f7fe_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/9a795b17b199f7fe_train_data.json
type:
field_instruction: text
field_output: label
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: false
group_by_length: false
hub_model_id: leixa/ff810066-31fd-4436-a2c4-296c7f507694
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/9a795b17b199f7fe_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: <|eot_id|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: ff810066-31fd-4436-a2c4-296c7f507694
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ff810066-31fd-4436-a2c4-296c7f507694
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
ff810066-31fd-4436-a2c4-296c7f507694
This model is a fine-tuned version of defog/llama-3-sqlcoder-8b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0775
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 393
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0076 | 1 | 16.8733 |
0.2599 | 0.2519 | 33 | 0.1527 |
0.0761 | 0.5038 | 66 | 0.1225 |
0.1768 | 0.7557 | 99 | 0.1619 |
0.0645 | 1.0076 | 132 | 0.1234 |
0.0688 | 1.2595 | 165 | 0.1283 |
0.0478 | 1.5115 | 198 | 0.1044 |
0.0468 | 1.7634 | 231 | 0.0829 |
0.0539 | 2.0153 | 264 | 0.0769 |
0.0326 | 2.2672 | 297 | 0.0764 |
0.0971 | 2.5191 | 330 | 0.0781 |
0.0526 | 2.7710 | 363 | 0.0775 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 21
Model tree for leixa/ff810066-31fd-4436-a2c4-296c7f507694
Base model
defog/llama-3-sqlcoder-8b