See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 2a278dad8a2f879c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/2a278dad8a2f879c_train_data.json
type:
field_instruction: track_id
field_output: track_genre
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: leixa/cce5a60b-b1b2-4b78-ab01-79a9c40de698
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 72GB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/2a278dad8a2f879c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: cce5a60b-b1b2-4b78-ab01-79a9c40de698
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: cce5a60b-b1b2-4b78-ab01-79a9c40de698
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
cce5a60b-b1b2-4b78-ab01-79a9c40de698
This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-Chat-v1.0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4942
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0003 | 1 | 8.4187 |
4.0596 | 0.0027 | 9 | 2.8866 |
2.0867 | 0.0053 | 18 | 2.0064 |
1.806 | 0.0080 | 27 | 1.7880 |
1.6277 | 0.0107 | 36 | 1.6605 |
1.778 | 0.0133 | 45 | 1.6586 |
1.5292 | 0.0160 | 54 | 1.6000 |
1.52 | 0.0186 | 63 | 1.5744 |
1.6674 | 0.0213 | 72 | 1.5439 |
1.4669 | 0.0240 | 81 | 1.5077 |
1.5067 | 0.0266 | 90 | 1.4968 |
1.3816 | 0.0293 | 99 | 1.4942 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for leixa/cce5a60b-b1b2-4b78-ab01-79a9c40de698
Base model
TinyLlama/TinyLlama-1.1B-Chat-v1.0