Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 7d10c4f243274b92_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/7d10c4f243274b92_train_data.json
  type:
    field_input: selftext
    field_instruction: title
    field_output: answers.text
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: leixa/c9a88734-2fec-4cbd-b2bb-47563b28a0fe
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 8
mlflow_experiment_name: /tmp/7d10c4f243274b92_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: c9a88734-2fec-4cbd-b2bb-47563b28a0fe
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c9a88734-2fec-4cbd-b2bb-47563b28a0fe
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

c9a88734-2fec-4cbd-b2bb-47563b28a0fe

This model is a fine-tuned version of trl-internal-testing/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.3410

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss
No log 0.0003 1 10.3780
10.3588 0.0108 42 10.3552
10.3505 0.0216 84 10.3497
10.3487 0.0323 126 10.3492
10.3488 0.0431 168 10.3480
10.347 0.0539 210 10.3451
10.3458 0.0647 252 10.3433
10.3448 0.0755 294 10.3423
10.3416 0.0862 336 10.3416
10.3412 0.0970 378 10.3412
10.342 0.1078 420 10.3410
10.341 0.1186 462 10.3410

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
9
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for leixa/c9a88734-2fec-4cbd-b2bb-47563b28a0fe