Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Qwen/Qwen2-7B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 4f2152f21b2599e3_train_data.json
  ds_type: json
  field: abstract
  path: /workspace/input_data/4f2152f21b2599e3_train_data.json
  type: completion
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: false
group_by_length: false
hub_model_id: leixa/9d46f5c2-100d-4fd1-9c09-e4787efc2c78
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/4f2152f21b2599e3_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 9d46f5c2-100d-4fd1-9c09-e4787efc2c78
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 9d46f5c2-100d-4fd1-9c09-e4787efc2c78
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

9d46f5c2-100d-4fd1-9c09-e4787efc2c78

This model is a fine-tuned version of Qwen/Qwen2-7B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3371

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss
No log 0.0007 1 2.4405
2.2859 0.0303 42 2.3629
2.29 0.0607 84 2.3552
2.2744 0.0910 126 2.3510
2.2463 0.1214 168 2.3477
2.3711 0.1517 210 2.3455
2.4129 0.1821 252 2.3428
2.3808 0.2124 294 2.3409
2.3442 0.2428 336 2.3393
2.2689 0.2731 378 2.3380
2.2352 0.3035 420 2.3372
2.3365 0.3338 462 2.3371

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
9
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for leixa/9d46f5c2-100d-4fd1-9c09-e4787efc2c78

Base model

Qwen/Qwen2-7B
Adapter
(153)
this model