metadata
library_name: transformers
license: mit
datasets:
- heegyu/open-korean-instructions
language:
- ko
tags:
- Llama-2-7b-hf
- LoRA
Llama-2 model fine tuning (Seoul Cyber University TREX-Lab)
Summary
- Base Model : meta-llama/Llama-2-7b-hf
- Dataset : heegyu/open-korean-instructions (100%)
- Tuning Method
- PEFT(Parameter Efficient Fine-Tuning)
- LoRA(Low-Rank Adaptation of Large Language Models)
- Related Articles : https://arxiv.org/abs/2106.09685
- Fine-tuning the Llama2 model with a random 100% of Korean chatbot data (open Korean instructions)
- Test whether fine tuning of a large language model is possible on A30 GPU*1 (successful)
- Developed by: [SM.Lee of Seoul Cyber University]
- Language(s) (NLP): [Korean]
- Finetuned from model : [meta-llama/Llama-2-7b-hf]
Fine Tuning Detail
- alpha value 16
- r value 64 (it seems a bit big...@@)
peft_config = LoraConfig(
lora_alpha=16,
lora_dropout=0.1,
r=64,
bias='none',
task_type='CAUSAL_LM'
)
- Mixed precision : 4bit (bnb_4bit_use_double_quant)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4',
bnb_4bit_compute_dtype='float16',
)
- Use SFT trainer (https://huggingface.co/docs/trl/sft_trainer)
trainer = SFTTrainer(
model=peft_model,
train_dataset=dataset,
dataset_text_field='text',
max_seq_length=min(tokenizer.model_max_length, 2048),
tokenizer=tokenizer,
packing=True,
args=training_args
)
Train Result
time taken : executed in 2d 0h 17m
TrainOutput(global_step=2001,
training_loss=0.6940358212922347,
metrics={
'train_runtime': 173852.2333,
'train_samples_per_second': 0.092,
'train_steps_per_second': 0.012,
'train_loss': 0.6940358212922347,
'epoch': 3.0})