|
|
|
|
|
""" |
|
|
|
Function to evaluate a model that was already trained : on data the model never saw, calculate the rmse and |
|
pearson for the prediction made by this model. |
|
""" |
|
|
|
|
|
import os,sys,inspect |
|
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) |
|
parentdir = os.path.dirname(currentdir) |
|
sys.path.insert(0,parentdir) |
|
|
|
import numpy as np |
|
import argparse |
|
import torch |
|
import os |
|
import csv |
|
import sys |
|
from Training.tools_learning import load_np_ema_and_mfcc, load_filenames, give_me_common_articulators, criterion_pearson_no_reduction |
|
import random |
|
from scipy import signal |
|
import matplotlib.pyplot as plt |
|
from Training.model import my_ac2art_model |
|
|
|
root_folder = os.path.dirname(os.getcwd()) |
|
fileset_path = os.path.join(root_folder, "Preprocessed_data", "fileset") |
|
|
|
print(sys.argv) |
|
articulators = ['tt_x', 'tt_y', 'td_x', 'td_y', 'tb_x', 'tb_y', 'li_x', 'li_y', |
|
'ul_x', 'ul_y', 'll_x', 'll_y', 'la', 'lp', 'ttcl', 'tbcl', 'v_x', 'v_y'] |
|
def test_model(test_on ,model_name, test_on_per_default = False, ) : |
|
""" |
|
:param test_on: the speaker test |
|
:param model_name: the name of the model (of the .txt file, without the ".txt") |
|
Need to have to weights of the models saved in a txt file located in Training/saved_models/ |
|
for example F01_speaker_indep_Haskins__loss_both_90_filter_fix_0.txt |
|
The test speaker has to be precised (in fact readable in the begining of the filename ==> future work) |
|
Depending on the configuration (read in the filename) it tests on parts of the test-speaker the model was not |
|
trained on. |
|
It also saves the graphs for one sentence of the predicted and true arti trajectories |
|
""" |
|
arti_indexes = [] |
|
if 'only_arti_common' in model_name: |
|
if "train_indep" in model_name: |
|
name = model_name.split('train_indep') |
|
test = name[0].split('_')[3] |
|
try: |
|
train = [sp for sp in name[1].split('valid')[0].split('_') if (sp != '' and sp != 'train')] |
|
except: |
|
train = [] |
|
try: |
|
valid = [sp for sp in name[1].split('valid')[1].split('loss')[0].split('_') if (sp != '' and sp != 'train')] |
|
except: |
|
valid = [] |
|
arti_indexes = give_me_common_articulators([test] + train + valid ) |
|
if "spec" in model_name: |
|
test = model_name.split('_')[3] |
|
train = [] |
|
valid = [] |
|
arti_indexes = give_me_common_articulators([test] + train + valid) |
|
if 'valid__' in model_name and 'indep' in model_name: |
|
test = model_name.split('_')[3] |
|
train = [model_name.split('_')[6]] |
|
valid = [] |
|
arti_indexes = give_me_common_articulators([test] + train + valid) |
|
|
|
|
|
if test_on_per_default: |
|
test_on = test |
|
else: |
|
train = [] |
|
valid = [] |
|
test= [] |
|
|
|
print(model_name) |
|
print('train on', train) |
|
print('valid on', valid) |
|
print('tested on', test) |
|
print('here test on', test_on) |
|
batch_norma = False |
|
filter_type = "fix" |
|
to_plot = True |
|
|
|
cuda_avail = torch.cuda.is_available() |
|
if cuda_avail: |
|
device = torch.device("cuda") |
|
else: |
|
device = torch.device("cpu") |
|
|
|
hidden_dim = 300 |
|
input_dim = 429 |
|
batch_size = 10 |
|
output_dim = len(arti_indexes) if arti_indexes != [] else 18 |
|
|
|
model = my_ac2art_model(hidden_dim=hidden_dim, input_dim=input_dim, output_dim=output_dim, |
|
batch_size=batch_size, cuda_avail=cuda_avail, name_file=model_name, |
|
filter_type=filter_type, batch_norma=batch_norma) |
|
model = model.double() |
|
|
|
file_weights = os.path.join("saved_models", model_name + ".txt") |
|
|
|
if cuda_avail: |
|
model = model.to(device=device) |
|
|
|
loaded_state = torch.load(file_weights, map_location=device) |
|
|
|
model.load_state_dict(loaded_state) |
|
|
|
if "indep" in model_name: |
|
files_for_test = load_filenames([test_on], part=["train", "valid", "test"]) |
|
|
|
else: |
|
files_for_test = load_filenames([test_on], part=["test"]) |
|
|
|
|
|
random.shuffle(files_for_test) |
|
x, y = load_np_ema_and_mfcc(files_for_test) |
|
print("evaluation on speaker {}".format(test_on)) |
|
std_speaker = np.load(os.path.join(root_folder, "Preprocessing", "norm_values", "std_ema_"+test_on+".npy")) |
|
arti_per_speaker = os.path.join(root_folder, "Preprocessing", "articulators_per_speaker.csv") |
|
csv.register_dialect('myDialect', delimiter=';') |
|
weight_apres = model.lowpass.weight.data[0, 0, :] |
|
|
|
with open(arti_per_speaker, 'r') as csvFile: |
|
reader = csv.reader(csvFile, dialect="myDialect") |
|
next(reader) |
|
for row in reader: |
|
if row[0] == test_on: |
|
arti_to_consider = row[1:19] |
|
arti_to_consider = [int(x) for x in arti_to_consider] |
|
if arti_indexes != []: |
|
arti_to_consider = [1 for k in range(len(arti_indexes))] |
|
|
|
rmse_per_arti_mean, rmse_per_arti_mean_without_std, pearson_per_arti_mean = model.evaluate_on_test_modified(x,y, std_speaker=std_speaker, to_plot=to_plot |
|
, to_consider=arti_to_consider, verbose=False, |
|
index_common= arti_indexes) |
|
|
|
|
|
show_filter = False |
|
if show_filter: |
|
weight_apres = model.lowpass.weight.data[0, 0, :] |
|
print("GAIN",sum(weight_apres.cpu())) |
|
freqs, h = signal.freqz(weight_apres.cpu()) |
|
freqs = freqs * 100 / (2 * np.pi) |
|
plt.plot(freqs, 20 * np.log10(abs(h)), 'r') |
|
plt.title("Low pass filter pace at the end of filter training") |
|
plt.ylabel('Amplitude [dB]') |
|
plt.xlabel("real frequency") |
|
plt.show() |
|
|
|
with open('model_results_test.csv', 'a',newline="") as f: |
|
writer = csv.writer(f, delimiter=",") |
|
try: |
|
row_arti = ['model', 'test on', 'value'] + [articulators[i] for i in arti_indexes] |
|
writer.writerow(row_arti) |
|
except: |
|
print('error') |
|
row_rmse = [model_name,test_on,"rmse"] + rmse_per_arti_mean.tolist() + [model.epoch_ref] |
|
writer.writerow(row_rmse) |
|
row_rmse_without_std = [model_name,test_on, "rmse without std"] + rmse_per_arti_mean_without_std.tolist() + [model.epoch_ref] |
|
writer.writerow(row_rmse_without_std) |
|
row_pearson = [model_name, test_on, "pearson"] + pearson_per_arti_mean.tolist() + [model.epoch_ref] |
|
print(row_pearson) |
|
writer.writerow(row_pearson) |
|
|
|
return rmse_per_arti_mean, pearson_per_arti_mean |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
parser = argparse.ArgumentParser(description='Train and save a model.') |
|
|
|
parser.add_argument('test_on', type=str, |
|
help='the speaker we want to test on') |
|
|
|
parser.add_argument('model_name', type=str, |
|
help='name of the model (without .txt)') |
|
|
|
|
|
args = parser.parse_args() |
|
|
|
rmse,pearson = test_model(test_on=args.test_on, model_name=args.model_name) |
|
print("results for model ",args.model_name) |
|
print("rmse",rmse) |
|
print("pearson",pearson) |
|
|