Upload test.py
Browse files
test.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
|
5 |
+
Function to evaluate a model that was already trained : on data the model never saw, calculate the rmse and
|
6 |
+
pearson for the prediction made by this model.
|
7 |
+
"""
|
8 |
+
|
9 |
+
|
10 |
+
import os,sys,inspect
|
11 |
+
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
|
12 |
+
parentdir = os.path.dirname(currentdir)
|
13 |
+
sys.path.insert(0,parentdir)
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
import argparse
|
17 |
+
import torch
|
18 |
+
import os
|
19 |
+
import csv
|
20 |
+
import sys
|
21 |
+
from Training.tools_learning import load_np_ema_and_mfcc, load_filenames, give_me_common_articulators, criterion_pearson_no_reduction
|
22 |
+
import random
|
23 |
+
from scipy import signal
|
24 |
+
import matplotlib.pyplot as plt
|
25 |
+
from Training.model import my_ac2art_model
|
26 |
+
|
27 |
+
root_folder = os.path.dirname(os.getcwd())
|
28 |
+
fileset_path = os.path.join(root_folder, "Preprocessed_data", "fileset")
|
29 |
+
|
30 |
+
print(sys.argv)
|
31 |
+
articulators = ['tt_x', 'tt_y', 'td_x', 'td_y', 'tb_x', 'tb_y', 'li_x', 'li_y',
|
32 |
+
'ul_x', 'ul_y', 'll_x', 'll_y', 'la', 'lp', 'ttcl', 'tbcl', 'v_x', 'v_y']
|
33 |
+
def test_model(test_on ,model_name, test_on_per_default = False, ) :
|
34 |
+
"""
|
35 |
+
:param test_on: the speaker test
|
36 |
+
:param model_name: the name of the model (of the .txt file, without the ".txt")
|
37 |
+
Need to have to weights of the models saved in a txt file located in Training/saved_models/
|
38 |
+
for example F01_speaker_indep_Haskins__loss_both_90_filter_fix_0.txt
|
39 |
+
The test speaker has to be precised (in fact readable in the begining of the filename ==> future work)
|
40 |
+
Depending on the configuration (read in the filename) it tests on parts of the test-speaker the model was not
|
41 |
+
trained on.
|
42 |
+
It also saves the graphs for one sentence of the predicted and true arti trajectories
|
43 |
+
"""
|
44 |
+
arti_indexes = []
|
45 |
+
if 'only_arti_common' in model_name:
|
46 |
+
if "train_indep" in model_name:
|
47 |
+
name = model_name.split('train_indep')
|
48 |
+
test = name[0].split('_')[3]
|
49 |
+
try:
|
50 |
+
train = [sp for sp in name[1].split('valid')[0].split('_') if (sp != '' and sp != 'train')]
|
51 |
+
except:
|
52 |
+
train = []
|
53 |
+
try:
|
54 |
+
valid = [sp for sp in name[1].split('valid')[1].split('loss')[0].split('_') if (sp != '' and sp != 'train')]
|
55 |
+
except:
|
56 |
+
valid = []
|
57 |
+
arti_indexes = give_me_common_articulators([test] + train + valid )
|
58 |
+
if "spec" in model_name:
|
59 |
+
test = model_name.split('_')[3]
|
60 |
+
train = []
|
61 |
+
valid = []
|
62 |
+
arti_indexes = give_me_common_articulators([test] + train + valid)
|
63 |
+
if 'valid__' in model_name and 'indep' in model_name:
|
64 |
+
test = model_name.split('_')[3]
|
65 |
+
train = [model_name.split('_')[6]]
|
66 |
+
valid = []
|
67 |
+
arti_indexes = give_me_common_articulators([test] + train + valid)
|
68 |
+
|
69 |
+
|
70 |
+
if test_on_per_default:
|
71 |
+
test_on = test
|
72 |
+
else:
|
73 |
+
train = []
|
74 |
+
valid = []
|
75 |
+
test= []
|
76 |
+
|
77 |
+
print(model_name)
|
78 |
+
print('train on', train)
|
79 |
+
print('valid on', valid)
|
80 |
+
print('tested on', test)
|
81 |
+
print('here test on', test_on)
|
82 |
+
batch_norma = False
|
83 |
+
filter_type = "fix"
|
84 |
+
to_plot = True
|
85 |
+
|
86 |
+
cuda_avail = torch.cuda.is_available()
|
87 |
+
if cuda_avail:
|
88 |
+
device = torch.device("cuda")
|
89 |
+
else:
|
90 |
+
device = torch.device("cpu")
|
91 |
+
|
92 |
+
hidden_dim = 300
|
93 |
+
input_dim = 429
|
94 |
+
batch_size = 10
|
95 |
+
output_dim = len(arti_indexes) if arti_indexes != [] else 18
|
96 |
+
|
97 |
+
model = my_ac2art_model(hidden_dim=hidden_dim, input_dim=input_dim, output_dim=output_dim,
|
98 |
+
batch_size=batch_size, cuda_avail=cuda_avail, name_file=model_name,
|
99 |
+
filter_type=filter_type, batch_norma=batch_norma)
|
100 |
+
model = model.double()
|
101 |
+
|
102 |
+
file_weights = os.path.join("saved_models", model_name + ".txt")
|
103 |
+
|
104 |
+
if cuda_avail:
|
105 |
+
model = model.to(device=device)
|
106 |
+
|
107 |
+
loaded_state = torch.load(file_weights, map_location=device)
|
108 |
+
|
109 |
+
model.load_state_dict(loaded_state)
|
110 |
+
|
111 |
+
if "indep" in model_name: # the model was not trained on the test speaker
|
112 |
+
files_for_test = load_filenames([test_on], part=["train", "valid", "test"])
|
113 |
+
|
114 |
+
else: # specific or dependant learning
|
115 |
+
files_for_test = load_filenames([test_on], part=["test"])
|
116 |
+
|
117 |
+
|
118 |
+
random.shuffle(files_for_test)
|
119 |
+
x, y = load_np_ema_and_mfcc(files_for_test)
|
120 |
+
print("evaluation on speaker {}".format(test_on))
|
121 |
+
std_speaker = np.load(os.path.join(root_folder, "Preprocessing", "norm_values", "std_ema_"+test_on+".npy"))
|
122 |
+
arti_per_speaker = os.path.join(root_folder, "Preprocessing", "articulators_per_speaker.csv")
|
123 |
+
csv.register_dialect('myDialect', delimiter=';')
|
124 |
+
weight_apres = model.lowpass.weight.data[0, 0, :]
|
125 |
+
|
126 |
+
with open(arti_per_speaker, 'r') as csvFile:
|
127 |
+
reader = csv.reader(csvFile, dialect="myDialect")
|
128 |
+
next(reader)
|
129 |
+
for row in reader:
|
130 |
+
if row[0] == test_on:
|
131 |
+
arti_to_consider = row[1:19]
|
132 |
+
arti_to_consider = [int(x) for x in arti_to_consider]
|
133 |
+
if arti_indexes != []:
|
134 |
+
arti_to_consider = [1 for k in range(len(arti_indexes))]
|
135 |
+
|
136 |
+
rmse_per_arti_mean, rmse_per_arti_mean_without_std, pearson_per_arti_mean = model.evaluate_on_test_modified(x,y, std_speaker=std_speaker, to_plot=to_plot
|
137 |
+
, to_consider=arti_to_consider, verbose=False,
|
138 |
+
index_common= arti_indexes)
|
139 |
+
|
140 |
+
|
141 |
+
show_filter = False #add it in argument
|
142 |
+
if show_filter:
|
143 |
+
weight_apres = model.lowpass.weight.data[0, 0, :]
|
144 |
+
print("GAIN",sum(weight_apres.cpu()))
|
145 |
+
freqs, h = signal.freqz(weight_apres.cpu())
|
146 |
+
freqs = freqs * 100 / (2 * np.pi) # freq in hz
|
147 |
+
plt.plot(freqs, 20 * np.log10(abs(h)), 'r')
|
148 |
+
plt.title("Low pass filter pace at the end of filter training")
|
149 |
+
plt.ylabel('Amplitude [dB]')
|
150 |
+
plt.xlabel("real frequency")
|
151 |
+
plt.show()
|
152 |
+
|
153 |
+
with open('model_results_test.csv', 'a',newline="") as f:
|
154 |
+
writer = csv.writer(f, delimiter=",")
|
155 |
+
try:
|
156 |
+
row_arti = ['model', 'test on', 'value'] + [articulators[i] for i in arti_indexes]
|
157 |
+
writer.writerow(row_arti)
|
158 |
+
except:
|
159 |
+
print('error')
|
160 |
+
row_rmse = [model_name,test_on,"rmse"] + rmse_per_arti_mean.tolist() + [model.epoch_ref]
|
161 |
+
writer.writerow(row_rmse)
|
162 |
+
row_rmse_without_std = [model_name,test_on, "rmse without std"] + rmse_per_arti_mean_without_std.tolist() + [model.epoch_ref]
|
163 |
+
writer.writerow(row_rmse_without_std)
|
164 |
+
row_pearson = [model_name, test_on, "pearson"] + pearson_per_arti_mean.tolist() + [model.epoch_ref]
|
165 |
+
print(row_pearson)
|
166 |
+
writer.writerow(row_pearson)
|
167 |
+
|
168 |
+
return rmse_per_arti_mean, pearson_per_arti_mean
|
169 |
+
|
170 |
+
|
171 |
+
if __name__ == '__main__':
|
172 |
+
# For the moment here the std is not included in the results
|
173 |
+
parser = argparse.ArgumentParser(description='Train and save a model.')
|
174 |
+
|
175 |
+
parser.add_argument('test_on', type=str,
|
176 |
+
help='the speaker we want to test on')
|
177 |
+
|
178 |
+
parser.add_argument('model_name', type=str,
|
179 |
+
help='name of the model (without .txt)')
|
180 |
+
|
181 |
+
|
182 |
+
args = parser.parse_args()
|
183 |
+
|
184 |
+
rmse,pearson = test_model(test_on=args.test_on, model_name=args.model_name)
|
185 |
+
print("results for model ",args.model_name)
|
186 |
+
print("rmse",rmse)
|
187 |
+
print("pearson",pearson)
|