Transformers
Safetensors
Inference Endpoints
glosslm / README.md
michaelginn's picture
Update README.md
3b35b58 verified
metadata
license: apache-2.0
datasets:
  - lecslab/glosslm-corpus-split
metrics:
  - accuracy
  - chrf
  - bleu
base_model:
  - google/byt5-base
library_name: transformers

Usage:

import transformers

# Your inputs
transcription = "o sey xtok rixoqiil"
translation = "O sea busca esposa."
lang = "Uspanteco"
metalang = "Spanish"
is_segmented = False

prompt = f"""Provide the glosses for the following transcription in {lang}.

Transcription in {lang}: {transcription}
Transcription segmented: {is_segmented}
Translation in {metalang}: {translation}\n
Glosses: 
"""

model = transformers.T5ForConditionalGeneration.from_pretrained("lecslab/glosslm")
tokenizer = transformers.ByT5Tokenizer.from_pretrained(
    "google/byt5-base", use_fast=False
)

inputs = tokenizer(prompt, return_tensors="pt")
outputs = tokenizer.batch_decode(
    model.generate(**inputs, max_length=1024), skip_special_tokens=True
)
print(outputs[0])
# o sea COM-buscar E3S-esposa