text_shortening_model_v61

This model is a fine-tuned version of t5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7370
  • Rouge1: 0.6559
  • Rouge2: 0.469
  • Rougel: 0.6075
  • Rougelsum: 0.6079
  • Bert precision: 0.9075
  • Bert recall: 0.9017
  • Bert f1-score: 0.9041
  • Average word count: 7.9152
  • Max word count: 15
  • Min word count: 3
  • Average token count: 12.1741
  • % shortened texts with length > 12: 6.6964

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Bert f1-score Average word count Max word count Min word count Average token count % shortened texts with length > 12
2.2731 1.0 49 1.3305 0.3966 0.2328 0.3397 0.3396 0.7258 0.7385 0.7316 9.3438 19 0 16.3929 28.5714
1.3225 2.0 98 0.9829 0.6051 0.422 0.5558 0.5557 0.8863 0.879 0.8822 8.0491 17 0 12.6607 8.0357
1.0933 3.0 147 0.8678 0.6346 0.4487 0.5869 0.5875 0.9012 0.8928 0.8965 7.8527 15 0 12.1607 5.8036
0.9836 4.0 196 0.8145 0.6404 0.449 0.5911 0.5918 0.9034 0.8971 0.8997 8.0179 15 3 12.1964 8.4821
0.9182 5.0 245 0.7860 0.647 0.4598 0.597 0.5974 0.9055 0.8989 0.9017 7.8884 15 3 12.1116 7.1429
0.8756 6.0 294 0.7659 0.6479 0.4606 0.5999 0.5996 0.9054 0.8982 0.9013 7.8839 15 3 12.1205 7.1429
0.84 7.0 343 0.7517 0.6544 0.4688 0.6062 0.6061 0.9067 0.9008 0.9033 7.9196 15 3 12.1741 7.1429
0.8256 8.0 392 0.7424 0.6515 0.4644 0.6033 0.6033 0.9068 0.9001 0.903 7.8705 15 3 12.1473 6.25
0.8198 9.0 441 0.7386 0.656 0.469 0.6076 0.608 0.9076 0.9017 0.9041 7.9107 15 3 12.1696 6.6964
0.8058 10.0 490 0.7370 0.6559 0.469 0.6075 0.6079 0.9075 0.9017 0.9041 7.9152 15 3 12.1741 6.6964

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v61

Base model

google-t5/t5-base
Finetuned
(435)
this model