t5-large-korean-text-summary

This model is a fine-tuning of paust/pko-t5-large model using AIHUB "summary and report generation data". This model provides a short summary of long sentences in Korean.

이 λͺ¨λΈμ€ paust/pko-t5-large model을 AIHUB "μš”μ•½λ¬Έ 및 레포트 생성 데이터"λ₯Ό μ΄μš©ν•˜μ—¬ fine tunning ν•œ κ²ƒμž…λ‹ˆλ‹€. 이 λͺ¨λΈμ€ ν•œκΈ€λ‘œλœ μž₯문을 짧게 μš”μ•½ν•΄ μ€λ‹ˆλ‹€.

Usage

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import nltk
nltk.download('punkt')

model_dir = "lcw99/t5-large-korean-text-summary"
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForSeq2SeqLM.from_pretrained(model_dir)

max_input_length = 512 + 256

text = """
주인곡 강인ꡬ(ν•˜μ •μš°)λŠ” β€˜μˆ˜λ¦¬λ‚¨μ—μ„œ 홍어가 많이 λ‚˜λŠ”λ° λ‹€ κ°–λ‹€λ²„λ¦°λ‹€β€™λŠ” 친ꡬ 
λ°•μ‘μˆ˜(ν˜„λ΄‰μ‹)의 μ–˜κΈ°λ₯Ό λ“£κ³  μˆ˜λ¦¬λ‚¨μ‚° 홍어λ₯Ό ν•œκ΅­μ— μˆ˜μΆœν•˜κΈ° μœ„ν•΄ μˆ˜λ¦¬λ‚¨μœΌλ‘œ κ°„λ‹€. 
κ΅­λ¦½μˆ˜μ‚°κ³Όν•™μ› 츑은 β€œμ‹€μ œλ‘œ λ‚¨λŒ€μ„œμ–‘μ— 홍어가 많이 μ‚΄κ³  μ•„λ₯΄ν—¨ν‹°λ‚˜λ₯Ό λΉ„λ‘―ν•œ 남미 κ΅­κ°€μ—μ„œ 홍어가 많이 μž‘νžŒλ‹€β€λ©° 
β€œμˆ˜λ¦¬λ‚¨ μ—°μ•ˆμ—λ„ 홍어가 많이 μ„œμ‹ν•  것”이라고 μ„€λͺ…ν–ˆλ‹€.

κ·ΈλŸ¬λ‚˜ 관세청에 λ”°λ₯΄λ©΄ ν•œκ΅­μ— μˆ˜λ¦¬λ‚¨μ‚° 홍어가 μˆ˜μž…λœ 적은 μ—†λ‹€. 
일각에선 β€œλˆμ„ 벌기 μœ„ν•΄ μˆ˜λ¦¬λ‚¨μ‚° 홍어λ₯Ό κ΅¬ν•˜λŸ¬ κ°„ 섀정은 κ°œμ—°μ„±μ΄ λ–¨μ–΄μ§„λ‹€β€λŠ” 지적도 ν•œλ‹€. 
λ“œλΌλ§ˆ 배경이 된 2008~2010λ…„μ—λŠ” 이미 ꡭ내에 μ•„λ₯΄ν—¨ν‹°λ‚˜, 칠레, λ―Έκ΅­ λ“± 아메리카산 홍어가 μˆ˜μž…λ˜κ³  μžˆμ—ˆκΈ° λ•Œλ¬Έμ΄λ‹€. 
μ‹€μ œ 쑰봉행 체포 μž‘μ „μ— ν˜‘μ‘°ν–ˆλ˜ β€˜ν˜‘λ ₯자 K씨’도 홍어 사업이 μ•„λ‹ˆλΌ μˆ˜λ¦¬λ‚¨μ— μ„ λ°•μš© νŠΉμˆ˜μš©μ ‘λ΄‰μ„ νŒŒλŠ” 사업을 ν•˜λŸ¬ μˆ˜λ¦¬λ‚¨μ— κ°”μ—ˆλ‹€.
"""

inputs = ["summarize: " + text]

inputs = tokenizer(inputs, max_length=max_input_length, truncation=True, return_tensors="pt")
output = model.generate(**inputs, num_beams=8, do_sample=True, min_length=10, max_length=100)
decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
predicted_title = nltk.sent_tokenize(decoded_output.strip())[0]

print(predicted_title)

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: None
  • training_precision: float16

Training results

Framework versions

  • Transformers 4.22.1
  • TensorFlow 2.10.0
  • Datasets 2.5.1
  • Tokenizers 0.12.1
Downloads last month
7,566
Safetensors
Model size
820M params
Tensor type
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.