metadata
license: mit
base_model: Bingsu/my-korean-stable-diffusion-v1-5
training_prompt: A rabbit is eating a watermelon on the table
tags:
- tune-a-video
- text-to-video
- diffusers
- korean
inference: false
Tune-A-VideKO - Korean Stable Diffusion v1-5
Model Description
- Base model: Bingsu/my-korean-stable-diffusion-v1-5
- Training prompt: A rabbit is eating a watermelon on the table
Samples
Test prompt: ๊ณ ์์ด๊ฐ ํด๋ณ์์ ์๋ฐ์ ๋จน๊ณ ์์ต๋๋ค
Test prompt: ๊ฐ์์ง๊ฐ ์ค๋ ์ง๋ฅผ ๋จน๊ณ ์์ต๋๋ค
Usage
Clone the github repo
git clone https://github.com/showlab/Tune-A-Video.git
Run inference code
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
from tuneavideo.models.unet import UNet3DConditionModel
from tuneavideo.util import save_videos_grid
import torch
pretrained_model_path = "Bingsu/my-korean-stable-diffusion-v1-5"
unet_model_path = "kyujinpy/Tune-A-VideoKO-v1-5"
unet = UNet3DConditionModel.from_pretrained(unet_model_path, subfolder='unet', torch_dtype=torch.float16).to('cuda')
pipe = TuneAVideoPipeline.from_pretrained(pretrained_model_path, unet=unet, torch_dtype=torch.float16).to("cuda")
pipe.enable_xformers_memory_efficient_attention()
prompt = "๊ฐ์์ง๊ฐ ๋งํ ์คํ์ผ๋ก ์์๋ฅผ ๋จน๊ณ ์์ต๋๋ค"
video = pipe(prompt, video_length=8, height=512, width=512, num_inference_steps=50, guidance_scale=12.5).videos
save_videos_grid(video, f"./{prompt}.gif")
Related Papers:
- Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation
- Stable Diffusion: High-Resolution Image Synthesis with Latent Diffusion Models