Kosy🍵llama

img

Model Details

Model Developers Kyujin Han (kyujinpy)

Model Description
NEFTune method를 활용하여 훈련한 Ko-platypus2 new version!
(Noisy + KO + llama = Kosy🍵llama)

Repo Link
Github KoNEFTune: Kosy🍵llama
If you visit our github, you can easily apply Random_noisy_embedding_fine-tuning!!

Base Model
hyunseoki/ko-en-llama2-13b

Training Dataset
Version of combined dataset: kyujinpy/KOpen-platypus
I use A100 GPU 40GB and COLAB, when trianing.

Model comparisons

KO-LLM leaderboard

NEFT comparisons

img

Model Average Ko-ARC Ko-HellaSwag Ko-MMLU Ko-TruthfulQA Ko-CommonGen V2
Ko-Platypus2-13B 45.60 44.20 54.31 42.47 44.41 42.62
*NEFT(🍵kosy)+MLP-v1 43.64 43.94 53.88 42.68 43.46 34.24
*NEFT(🍵kosy)+MLP-v2 45.45 44.20 54.56 42.60 42.68 42.98
*NEFT(🍵kosy)+MLP-v3 46.31 43.34 54.54 43.38 44.11 46.16
NEFT(🍵kosy)+Attention 44.92 42.92 54.48 42.99 43.00 41.20
NEFT(🍵kosy) 45.08 43.09 53.61 41.06 43.47 43.21

*Different Hyperparameters such that learning_rate, batch_size, epoch, etc...

Implementation Code

### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "kyujinpy/Koisy-Platypus2-13B"
OpenOrca = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)

Downloads last month
4,458
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train kyujinpy/Kosy-platypus2-13B-v5

Spaces using kyujinpy/Kosy-platypus2-13B-v5 5