|
--- |
|
language: |
|
- ko |
|
datasets: |
|
- kyujinpy/OpenOrca-KO |
|
- kyujinpy/KOpen-platypus |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
license: cc-by-nc-4.0 |
|
--- |
|
|
|
# **🐳KoR-Orca-Platypus-13B🐳** |
|
![img](./Korean-OpenOrca.png) |
|
|
|
## Model Details |
|
|
|
**Model Developers** Kyujin Han (kyujinpy) |
|
|
|
**Input** Models input text only. |
|
|
|
**Output** Models generate text only. |
|
|
|
**Model Architecture** |
|
KoR-Orca-Platypus-13B is an auto-regressive language model based on the LLaMA2 transformer architecture. |
|
|
|
**Repo Link** |
|
Github Korean-OpenOrca: [🐳KoR-Orca-Platypus-13B🐳](https://github.com/Marker-Inc-Korea/Korean-OpenOrca) |
|
|
|
**Base Model** [hyunseoki/ko-en-llama2-13b](https://huggingface.co/hyunseoki/ko-en-llama2-13b) |
|
|
|
**Training Dataset** |
|
Version of combined dataset: [kyujinpy/KOR-OpenOrca-Platypus](https://huggingface.co/datasets/kyujinpy/KOR-OpenOrca-Platypus) |
|
|
|
I combined [OpenOrca-KO](https://huggingface.co/datasets/kyujinpy/OpenOrca-KO) and [kyujinpy/KOpen-platypus](https://huggingface.co/datasets/kyujinpy/KOpen-platypus). |
|
I use A100 GPU 40GB and COLAB, when trianing. |
|
|
|
# **Model Benchmark** |
|
|
|
## KO-LLM leaderboard |
|
- Follow up as [Open KO-LLM LeaderBoard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard). |
|
|
|
| Model | Average |Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | |
|
| --- | --- | --- | --- | --- | --- | --- | |
|
| KoR-Orca-Platypus-13B🐳(ours) | 50.13 | 42.06 | 53.95 | 42.28 | 43.55 | 68.78 | |
|
| [GenAI-llama2-ko-en-platypus](https://huggingface.co/42MARU/GenAI-llama2-ko-en-platypus) | 49.81 | 45.22 | 55.25 | 41.84 | 44.78 | 61.97 | |
|
| [KoT-Platypus2-13B](https://huggingface.co/kyujinpy/KoT-platypus2-13B) | 49.55 | 43.69 | 53.05 | 42.29 | 43.34 | 65.38 | |
|
| [KO-Platypus2-13B](https://huggingface.co/kyujinpy/KO-Platypus2-13B) | 47.90 | 44.20 | 54.31 | 42.47 | 44.41 | 54.11 | |
|
| [Korean-OpenOrca-13B🐳](https://huggingface.co/kyujinpy/Korean-OpenOrca-13B) | 47.85 | 43.09 | 54.13 | 40.24 | 45.22 | 56.57 | |
|
|
|
> Compare with Top 4 SOTA models. (update: 10/14) |
|
|
|
|
|
# Implementation Code |
|
```python |
|
### KO-Platypus |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
repo = "kyujinpy/KoR-Orca-Platypus-13B" |
|
OpenOrca = AutoModelForCausalLM.from_pretrained( |
|
repo, |
|
return_dict=True, |
|
torch_dtype=torch.float16, |
|
device_map='auto' |
|
) |
|
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) |
|
``` |
|
|
|
--- |