(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다
The license is cc-by-nc-sa-4.0
.
CoT-llama2-7B
More detail repo(Github): CoT-llama2
Model Details
Model Developers Kyujin Han (kyujinpy)
Input Models input text only.
Output Models generate text only.
Model Architecture
CoT-llama2 is an auto-regressive language model based on the LLaMA2 transformer architecture.
Base Model Llama-2-ko-7b
Training Dataset
I use KoCoT_2000.
Using DeepL, translate about kaist-CoT.
I use A100 GPU 40GB and COLAB, when trianing.
Training Hyperparameters
Hyperparameters | Value |
---|---|
batch_size | 64 |
micro_batch_size | 1 |
Epochs | 15 |
learning_rate | 1e-5 |
cutoff_len | 2048 |
lr_scheduler | linear |
base_model | beomi/llama-2-ko-7b |
Model Benchmark
LM Eval Harness - Korean (polyglot branch)
- Used EleutherAI's lm-evaluation-harness
Question Answering (QA)
COPA (F1)
Model | 0-shot | 5-shot | 10-shot | 50-shot |
---|---|---|---|---|
Polyglot-ko-1.3b | 0.7196 | 0.7193 | 0.7204 | 0.7206 |
Polyglot-ko-3.8b | 0.7595 | 0.7608 | 0.7638 | 0.7788 |
Polyglot-ko-5.8b | 0.7745 | 0.7676 | 0.7775 | 0.7887 |
Polyglot-ko-12.8b | 0.7937 | 0.8108 | 0.8037 | 0.8369 |
Llama-2-Ko-7b 20B | 0.7388 | 0.7626 | 0.7808 | 0.7979 |
Llama-2-Ko-7b 40B | 0.7436 | 0.7927 | 0.8037 | 0.8259 |
KO-platypus2-7B-EX | 0.7509 | 0.7899 | 0.8029 | 0.8290 |
CoT-llama2-7B(ours) | 0.7528 | 0.7888 | 0.7998 | 0.8210 |
Natural Language Inference (NLI; 자연어 추론 평가)
HellaSwag (F1)
Model | 0-shot | 5-shot | 10-shot | 50-shot |
---|---|---|---|---|
Polyglot-ko-1.3b | 0.5247 | 0.5260 | 0.5278 | 0.5427 |
Polyglot-ko-3.8b | 0.5707 | 0.5830 | 0.5670 | 0.5787 |
Polyglot-ko-5.8b | 0.5976 | 0.5998 | 0.5979 | 0.6208 |
Polyglot-ko-12.8b | 0.5954 | 0.6306 | 0.6098 | 0.6118 |
Llama-2-Ko-7b 20B | 0.4518 | 0.4668 | 0.4726 | 0.4828 |
Llama-2-Ko-7b 40B | 0.4562 | 0.4657 | 0.4698 | 0.4774 |
KO-platypus2-7B-EX | 0.4571 | 0.4461 | 0.4371 | 0.4525 |
CoT-llama2-7B(ours) | 0.4543 | 0.4554 | 0.4606 | 0.4579 |
Question Answering (QA)
BoolQ (F1)
Model | 0-shot | 5-shot | 10-shot | 50-shot |
---|---|---|---|---|
Polyglot-ko-1.3b | 0.3552 | 0.4751 | 0.4109 | 0.4038 |
Polyglot-ko-3.8b | 0.4320 | 0.5263 | 0.4930 | 0.4038 |
Polyglot-ko-5.8b | 0.4356 | 0.5698 | 0.5187 | 0.5236 |
Polyglot-ko-12.8b | 0.4818 | 0.6041 | 0.6289 | 0.6448 |
Llama-2-Ko-7b 20B | 0.3607 | 0.6797 | 0.6801 | 0.6622 |
Llama-2-Ko-7b 40B | 0.5786 | 0.6977 | 0.7084 | 0.7144 |
KO-platypus2-7B-EX | 0.6028 | 0.6979 | 0.7016 | 0.6988 |
CoT-llama2-7B(ours) | 0.5852 | 0.6947 | 0.7059 | 0.7213 |
Classification
SentiNeg (F1)
Model | 0-shot | 5-shot | 10-shot | 50-shot |
---|---|---|---|---|
Polyglot-ko-1.3b | 0.6790 | 0.6257 | 0.5514 | 0.7851 |
Polyglot-ko-3.8b | 0.4858 | 0.7950 | 0.7320 | 0.7851 |
Polyglot-ko-5.8b | 0.3394 | 0.8841 | 0.8808 | 0.9521 |
Polyglot-ko-12.8b | 0.9117 | 0.9015 | 0.9345 | 0.9723 |
Llama-2-Ko-7b 20B | 0.4855 | 0.8295 | 0.8711 | 0.8513 |
Llama-2-Ko-7b 40B | 0.4594 | 0.7611 | 0.7276 | 0.9370 |
KO-platypus2-7B-EX | 0.5821 | 0.7653 | 0.7991 | 0.8643 |
CoT-llama2-7B(ours) | 0.5045 | 0.8054 | 0.7942 | 0.9446 |
Implementation Code
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "kyujinpy/CoT-llama-2k-7b"
CoT-llama = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
CoT-llama_tokenizer = AutoTokenizer.from_pretrained(repo)
Readme format: beomi/llama-2-ko-7b
- Downloads last month
- 3,526
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.