See axolotl config
axolotl version: 0.6.0
base_model: meta-llama/Llama-3.2-1B-Instruct
hub_model_id: kweinmeister/Llama-3.2-1B-Instruct-gsm8k
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: openai/gsm8k
type: alpaca_chat.load_qa
name: "main"
train_on_split: "train"
val_set_size: 0.1
output_dir: "/mnt/disks/gcs/axolotl/outputs/gsm8k-out"
adapter: qlora
lora_model_dir:
sequence_len: 2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
# optimizer: adamw_bnb_8bit
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
# gradient_checkpointing: true
gradient_checkpointing: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
fsdp_activation_checkpointing: true
special_tokens:
bos_token: "<|begin_of_text|>"
eos_token: "<|eot_id|>"
pad_token: "<|finetune_right_pad_id|>"
Llama-3.2-1B-Instruct-gsm8k
This model is a fine-tuned version of meta-llama/Llama-3.2-1B-Instruct on the openai/gsm8k dataset. It achieves the following results on the evaluation set:
- Loss: 0.5915
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0727 | 0.0242 | 1 | 1.0837 |
1.0432 | 0.2667 | 11 | 1.0485 |
0.844 | 0.5333 | 22 | 0.8698 |
0.7058 | 0.8 | 33 | 0.7048 |
0.5912 | 1.0485 | 44 | 0.6477 |
0.6363 | 1.3152 | 55 | 0.6196 |
0.5919 | 1.5818 | 66 | 0.6064 |
0.5804 | 1.8485 | 77 | 0.5989 |
0.5718 | 2.0970 | 88 | 0.5945 |
0.5651 | 2.3636 | 99 | 0.5925 |
0.5808 | 2.6303 | 110 | 0.5915 |
0.5704 | 2.8970 | 121 | 0.5915 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.3.1+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 28
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for kweinmeister/Llama-3.2-1B-Instruct-gsm8k
Base model
meta-llama/Llama-3.2-1B-Instruct