|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
metrics: |
|
- accuracy |
|
library_name: transformers |
|
pipeline_tag: text-classification |
|
--- |
|
This MistralAI 7B was fined-tuned on nuclear energy data from twitter/X. The classification accuracy obtained is 94%. \ |
|
The number of labels is 3: {0: Negative, 1: Neutral, 2: Positive} \ |
|
Warning: You need sufficient GPU to run this model. |
|
|
|
This is an example to use it, it worked on 8 GB Nvidia-RTX 4060 |
|
```bash |
|
from transformers import AutoTokenizer |
|
from transformers import pipeline |
|
from transformers import AutoModelForSequenceClassification |
|
import torch |
|
|
|
checkpoint = 'kumo24/mistralai-sentiment-nuclear' |
|
tokenizer=AutoTokenizer.from_pretrained(checkpoint) |
|
id2label = {0: "negative", 1: "neutral", 2: "positive"} |
|
label2id = {"negative": 0, "neutral": 1, "positive": 2} |
|
|
|
|
|
if tokenizer.pad_token is None: |
|
tokenizer.add_special_tokens({'pad_token': '[PAD]'}) |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained(checkpoint, |
|
num_labels=3, |
|
id2label=id2label, |
|
label2id=label2id, |
|
device_map='auto') |
|
|
|
sentiment_task = pipeline("sentiment-analysis", |
|
model=model, |
|
tokenizer=tokenizer) |
|
|
|
print(sentiment_task("Michigan Wolverines are Champions, Go Blue!")) |
|
``` |