my-clf / README.md
krittapas's picture
End of training
c790ddd verified
metadata
license: mit
base_model: avsolatorio/GIST-large-Embedding-v0
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: my-clf
    results: []

my-clf

This model is a fine-tuned version of avsolatorio/GIST-large-Embedding-v0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2391
  • F1: 0.5650
  • Roc Auc: 0.7487
  • Accuracy: 0.1228

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
No log 1.0 50 0.3095 0.1123 0.5442 0.0351
No log 2.0 100 0.2862 0.2744 0.6015 0.0702
No log 3.0 150 0.2642 0.3740 0.6488 0.0877
No log 4.0 200 0.2563 0.4429 0.6792 0.0526
No log 5.0 250 0.2492 0.5030 0.7178 0.0877
No log 6.0 300 0.2323 0.5296 0.7199 0.1228
No log 7.0 350 0.2372 0.5433 0.7326 0.1053
No log 8.0 400 0.2326 0.5371 0.7279 0.1053
No log 9.0 450 0.2346 0.5587 0.7382 0.1404
0.1673 10.0 500 0.2393 0.5819 0.7534 0.1053
0.1673 11.0 550 0.2370 0.5656 0.7471 0.1053
0.1673 12.0 600 0.2374 0.5680 0.7479 0.1404
0.1673 13.0 650 0.2392 0.5680 0.7500 0.1228
0.1673 14.0 700 0.2398 0.5650 0.7487 0.1228
0.1673 15.0 750 0.2391 0.5650 0.7487 0.1228

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.2