kpriyanshu256's picture
Librarian Bot: Add base_model information to model (#1)
a550b16
metadata
language:
  - as
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
base_model: openai/whisper-medium
model-index:
  - name: openai/whisper-medium-Assamese
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: as
          split: test
          args: as
        metrics:
          - type: wer
            value: 59.321422125970045
            name: Wer

openai/whisper-medium-Assamese

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1192
  • Wer: 59.3214

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1546 1.0 200 1.1192 59.3214

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1