kperkins411
commited on
Commit
•
791fc47
1
Parent(s):
1567d8d
Add new SentenceTransformer model.
Browse files- README.md +114 -88
- model.safetensors +1 -1
README.md
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
---
|
|
|
2 |
datasets: []
|
3 |
language: []
|
4 |
library_name: sentence-transformers
|
@@ -187,7 +188,7 @@ widget:
|
|
187 |
and/or any of its affiliates and the directors, officers and employees of Domini
|
188 |
and/or any of its affiliates.
|
189 |
model-index:
|
190 |
-
- name: SentenceTransformer
|
191 |
results:
|
192 |
- task:
|
193 |
type: information-retrieval
|
@@ -200,103 +201,103 @@ model-index:
|
|
200 |
value: 0.3953048087845513
|
201 |
name: Cosine Accuracy@1
|
202 |
- type: cosine_accuracy@3
|
203 |
-
value: 0.
|
204 |
name: Cosine Accuracy@3
|
205 |
- type: cosine_accuracy@5
|
206 |
-
value: 0.
|
207 |
name: Cosine Accuracy@5
|
208 |
- type: cosine_accuracy@10
|
209 |
-
value: 0.
|
210 |
name: Cosine Accuracy@10
|
211 |
- type: cosine_precision@1
|
212 |
value: 0.3953048087845513
|
213 |
name: Cosine Precision@1
|
214 |
- type: cosine_precision@3
|
215 |
-
value: 0.
|
216 |
name: Cosine Precision@3
|
217 |
- type: cosine_precision@5
|
218 |
-
value: 0.
|
219 |
name: Cosine Precision@5
|
220 |
- type: cosine_precision@10
|
221 |
-
value: 0.
|
222 |
name: Cosine Precision@10
|
223 |
- type: cosine_recall@1
|
224 |
value: 0.3953048087845513
|
225 |
name: Cosine Recall@1
|
226 |
- type: cosine_recall@3
|
227 |
-
value: 0.
|
228 |
name: Cosine Recall@3
|
229 |
- type: cosine_recall@5
|
230 |
-
value: 0.
|
231 |
name: Cosine Recall@5
|
232 |
- type: cosine_recall@10
|
233 |
-
value: 0.
|
234 |
name: Cosine Recall@10
|
235 |
- type: cosine_ndcg@10
|
236 |
-
value: 0.
|
237 |
name: Cosine Ndcg@10
|
238 |
- type: cosine_mrr@10
|
239 |
-
value: 0.
|
240 |
name: Cosine Mrr@10
|
241 |
- type: cosine_map@100
|
242 |
-
value: 0.
|
243 |
name: Cosine Map@100
|
244 |
- type: dot_accuracy@1
|
245 |
-
value: 0.
|
246 |
name: Dot Accuracy@1
|
247 |
- type: dot_accuracy@3
|
248 |
-
value: 0.
|
249 |
name: Dot Accuracy@3
|
250 |
- type: dot_accuracy@5
|
251 |
-
value: 0.
|
252 |
name: Dot Accuracy@5
|
253 |
- type: dot_accuracy@10
|
254 |
-
value: 0.
|
255 |
name: Dot Accuracy@10
|
256 |
- type: dot_precision@1
|
257 |
-
value: 0.
|
258 |
name: Dot Precision@1
|
259 |
- type: dot_precision@3
|
260 |
-
value: 0.
|
261 |
name: Dot Precision@3
|
262 |
- type: dot_precision@5
|
263 |
-
value: 0.
|
264 |
name: Dot Precision@5
|
265 |
- type: dot_precision@10
|
266 |
-
value: 0.
|
267 |
name: Dot Precision@10
|
268 |
- type: dot_recall@1
|
269 |
-
value: 0.
|
270 |
name: Dot Recall@1
|
271 |
- type: dot_recall@3
|
272 |
-
value: 0.
|
273 |
name: Dot Recall@3
|
274 |
- type: dot_recall@5
|
275 |
-
value: 0.
|
276 |
name: Dot Recall@5
|
277 |
- type: dot_recall@10
|
278 |
-
value: 0.
|
279 |
name: Dot Recall@10
|
280 |
- type: dot_ndcg@10
|
281 |
-
value: 0.
|
282 |
name: Dot Ndcg@10
|
283 |
- type: dot_mrr@10
|
284 |
-
value: 0.
|
285 |
name: Dot Mrr@10
|
286 |
- type: dot_map@100
|
287 |
-
value: 0.
|
288 |
name: Dot Map@100
|
289 |
---
|
290 |
|
291 |
-
# SentenceTransformer
|
292 |
|
293 |
-
This is a [sentence-transformers](https://www.SBERT.net) model
|
294 |
|
295 |
## Model Details
|
296 |
|
297 |
### Model Description
|
298 |
- **Model Type:** Sentence Transformer
|
299 |
-
|
300 |
- **Maximum Sequence Length:** 350 tokens
|
301 |
- **Output Dimensionality:** 768 tokens
|
302 |
- **Similarity Function:** Cosine Similarity
|
@@ -383,38 +384,38 @@ You can finetune this model on your own dataset.
|
|
383 |
* Dataset: `msmarco-distilbert-base-v2`
|
384 |
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
385 |
|
386 |
-
| Metric | Value
|
387 |
-
|
388 |
-
| cosine_accuracy@1 | 0.3953
|
389 |
-
| cosine_accuracy@3 | 0.
|
390 |
-
| cosine_accuracy@5 | 0.
|
391 |
-
| cosine_accuracy@10 | 0.
|
392 |
-
| cosine_precision@1 | 0.3953
|
393 |
-
| cosine_precision@3 | 0.
|
394 |
-
| cosine_precision@5 | 0.
|
395 |
-
| cosine_precision@10 | 0.
|
396 |
-
| cosine_recall@1 | 0.3953
|
397 |
-
| cosine_recall@3 | 0.
|
398 |
-
| cosine_recall@5 | 0.
|
399 |
-
| cosine_recall@10 | 0.
|
400 |
-
| cosine_ndcg@10 | 0.
|
401 |
-
| cosine_mrr@10 | 0.
|
402 |
-
| **cosine_map@100** | **0.
|
403 |
-
| dot_accuracy@1 | 0.
|
404 |
-
| dot_accuracy@3 | 0.
|
405 |
-
| dot_accuracy@5 | 0.
|
406 |
-
| dot_accuracy@10 | 0.
|
407 |
-
| dot_precision@1 | 0.
|
408 |
-
| dot_precision@3 | 0.
|
409 |
-
| dot_precision@5 | 0.
|
410 |
-
| dot_precision@10 | 0.
|
411 |
-
| dot_recall@1 | 0.
|
412 |
-
| dot_recall@3 | 0.
|
413 |
-
| dot_recall@5 | 0.
|
414 |
-
| dot_recall@10 | 0.
|
415 |
-
| dot_ndcg@10 | 0.
|
416 |
-
| dot_mrr@10 | 0.
|
417 |
-
| dot_map@100 | 0.
|
418 |
|
419 |
<!--
|
420 |
## Bias, Risks and Limitations
|
@@ -489,6 +490,7 @@ You can finetune this model on your own dataset.
|
|
489 |
- `per_device_train_batch_size`: 128
|
490 |
- `per_device_eval_batch_size`: 128
|
491 |
- `learning_rate`: 2e-05
|
|
|
492 |
- `warmup_ratio`: 0.1
|
493 |
- `fp16`: True
|
494 |
- `load_best_model_at_end`: True
|
@@ -513,7 +515,7 @@ You can finetune this model on your own dataset.
|
|
513 |
- `adam_beta2`: 0.999
|
514 |
- `adam_epsilon`: 1e-08
|
515 |
- `max_grad_norm`: 1.0
|
516 |
-
- `num_train_epochs`:
|
517 |
- `max_steps`: -1
|
518 |
- `lr_scheduler_type`: linear
|
519 |
- `lr_scheduler_kwargs`: {}
|
@@ -611,30 +613,54 @@ You can finetune this model on your own dataset.
|
|
611 |
### Training Logs
|
612 |
| Epoch | Step | Training Loss | loss | msmarco-distilbert-base-v2_cosine_map@100 |
|
613 |
|:----------:|:--------:|:-------------:|:----------:|:-----------------------------------------:|
|
614 |
-
| 0 | 0 | - | - | 0.
|
615 |
-
| 0.1453 | 100 |
|
616 |
-
| 0.2907 | 200 | 0.
|
617 |
-
| 0.4360 | 300 | 0.
|
618 |
-
| 0.5814 | 400 | 0.
|
619 |
-
| 0.7267 | 500 | 0.
|
620 |
-
| 0.8721 | 600 | 0.
|
621 |
-
| 1.0131 | 697 | - | 0.
|
622 |
-
| 1.0044 | 700 | 0.
|
623 |
-
| 1.1497 | 800 | 0.
|
624 |
-
| 1.2951 | 900 | 0.
|
625 |
-
| 1.4404 | 1000 | 0.
|
626 |
-
| 1.5858 | 1100 | 0.
|
627 |
-
| 1.7311 | 1200 | 0.
|
628 |
-
| 1.8765 | 1300 | 0.
|
629 |
-
| 2.0131 | 1394 | - | 0.
|
630 |
-
| 2.0087 | 1400 | 0.
|
631 |
-
| 2.1541 | 1500 | 0.
|
632 |
-
| 2.2994 | 1600 | 0.
|
633 |
-
| 2.4448 | 1700 | 0.
|
634 |
-
| 2.5901 | 1800 | 0.
|
635 |
-
| 2.7355 | 1900 | 0.
|
636 |
-
| 2.8808 | 2000 | 0.
|
637 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
638 |
|
639 |
* The bold row denotes the saved checkpoint.
|
640 |
|
|
|
1 |
---
|
2 |
+
base_model: sentence-transformers/msmarco-distilbert-base-v2
|
3 |
datasets: []
|
4 |
language: []
|
5 |
library_name: sentence-transformers
|
|
|
188 |
and/or any of its affiliates and the directors, officers and employees of Domini
|
189 |
and/or any of its affiliates.
|
190 |
model-index:
|
191 |
+
- name: SentenceTransformer based on sentence-transformers/msmarco-distilbert-base-v2
|
192 |
results:
|
193 |
- task:
|
194 |
type: information-retrieval
|
|
|
201 |
value: 0.3953048087845513
|
202 |
name: Cosine Accuracy@1
|
203 |
- type: cosine_accuracy@3
|
204 |
+
value: 0.5376751230594472
|
205 |
name: Cosine Accuracy@3
|
206 |
- type: cosine_accuracy@5
|
207 |
+
value: 0.594471790988262
|
208 |
name: Cosine Accuracy@5
|
209 |
- type: cosine_accuracy@10
|
210 |
+
value: 0.673608481635744
|
211 |
name: Cosine Accuracy@10
|
212 |
- type: cosine_precision@1
|
213 |
value: 0.3953048087845513
|
214 |
name: Cosine Precision@1
|
215 |
- type: cosine_precision@3
|
216 |
+
value: 0.1792250410198157
|
217 |
name: Cosine Precision@3
|
218 |
- type: cosine_precision@5
|
219 |
+
value: 0.1188943581976524
|
220 |
name: Cosine Precision@5
|
221 |
- type: cosine_precision@10
|
222 |
+
value: 0.06736084816357439
|
223 |
name: Cosine Precision@10
|
224 |
- type: cosine_recall@1
|
225 |
value: 0.3953048087845513
|
226 |
name: Cosine Recall@1
|
227 |
- type: cosine_recall@3
|
228 |
+
value: 0.5376751230594472
|
229 |
name: Cosine Recall@3
|
230 |
- type: cosine_recall@5
|
231 |
+
value: 0.594471790988262
|
232 |
name: Cosine Recall@5
|
233 |
- type: cosine_recall@10
|
234 |
+
value: 0.673608481635744
|
235 |
name: Cosine Recall@10
|
236 |
- type: cosine_ndcg@10
|
237 |
+
value: 0.5276829229789854
|
238 |
name: Cosine Ndcg@10
|
239 |
- type: cosine_mrr@10
|
240 |
+
value: 0.4818510605049796
|
241 |
name: Cosine Mrr@10
|
242 |
- type: cosine_map@100
|
243 |
+
value: 0.48897515764559735
|
244 |
name: Cosine Map@100
|
245 |
- type: dot_accuracy@1
|
246 |
+
value: 0.3964407421431276
|
247 |
name: Dot Accuracy@1
|
248 |
- type: dot_accuracy@3
|
249 |
+
value: 0.5335100340780008
|
250 |
name: Dot Accuracy@3
|
251 |
- type: dot_accuracy@5
|
252 |
+
value: 0.5933358576296858
|
253 |
name: Dot Accuracy@5
|
254 |
- type: dot_accuracy@10
|
255 |
+
value: 0.6743657705414615
|
256 |
name: Dot Accuracy@10
|
257 |
- type: dot_precision@1
|
258 |
+
value: 0.3964407421431276
|
259 |
name: Dot Precision@1
|
260 |
- type: dot_precision@3
|
261 |
+
value: 0.17783667802600023
|
262 |
name: Dot Precision@3
|
263 |
- type: dot_precision@5
|
264 |
+
value: 0.11866717152593716
|
265 |
name: Dot Precision@5
|
266 |
- type: dot_precision@10
|
267 |
+
value: 0.06743657705414616
|
268 |
name: Dot Precision@10
|
269 |
- type: dot_recall@1
|
270 |
+
value: 0.3964407421431276
|
271 |
name: Dot Recall@1
|
272 |
- type: dot_recall@3
|
273 |
+
value: 0.5335100340780008
|
274 |
name: Dot Recall@3
|
275 |
- type: dot_recall@5
|
276 |
+
value: 0.5933358576296858
|
277 |
name: Dot Recall@5
|
278 |
- type: dot_recall@10
|
279 |
+
value: 0.6743657705414615
|
280 |
name: Dot Recall@10
|
281 |
- type: dot_ndcg@10
|
282 |
+
value: 0.5274757216450244
|
283 |
name: Dot Ndcg@10
|
284 |
- type: dot_mrr@10
|
285 |
+
value: 0.4814724160521211
|
286 |
name: Dot Mrr@10
|
287 |
- type: dot_map@100
|
288 |
+
value: 0.4884569183065979
|
289 |
name: Dot Map@100
|
290 |
---
|
291 |
|
292 |
+
# SentenceTransformer based on sentence-transformers/msmarco-distilbert-base-v2
|
293 |
|
294 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/msmarco-distilbert-base-v2](https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
295 |
|
296 |
## Model Details
|
297 |
|
298 |
### Model Description
|
299 |
- **Model Type:** Sentence Transformer
|
300 |
+
- **Base model:** [sentence-transformers/msmarco-distilbert-base-v2](https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v2) <!-- at revision 741fcf2d6eabaf0927bfe49c6d9c577df95d3c40 -->
|
301 |
- **Maximum Sequence Length:** 350 tokens
|
302 |
- **Output Dimensionality:** 768 tokens
|
303 |
- **Similarity Function:** Cosine Similarity
|
|
|
384 |
* Dataset: `msmarco-distilbert-base-v2`
|
385 |
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
386 |
|
387 |
+
| Metric | Value |
|
388 |
+
|:--------------------|:----------|
|
389 |
+
| cosine_accuracy@1 | 0.3953 |
|
390 |
+
| cosine_accuracy@3 | 0.5377 |
|
391 |
+
| cosine_accuracy@5 | 0.5945 |
|
392 |
+
| cosine_accuracy@10 | 0.6736 |
|
393 |
+
| cosine_precision@1 | 0.3953 |
|
394 |
+
| cosine_precision@3 | 0.1792 |
|
395 |
+
| cosine_precision@5 | 0.1189 |
|
396 |
+
| cosine_precision@10 | 0.0674 |
|
397 |
+
| cosine_recall@1 | 0.3953 |
|
398 |
+
| cosine_recall@3 | 0.5377 |
|
399 |
+
| cosine_recall@5 | 0.5945 |
|
400 |
+
| cosine_recall@10 | 0.6736 |
|
401 |
+
| cosine_ndcg@10 | 0.5277 |
|
402 |
+
| cosine_mrr@10 | 0.4819 |
|
403 |
+
| **cosine_map@100** | **0.489** |
|
404 |
+
| dot_accuracy@1 | 0.3964 |
|
405 |
+
| dot_accuracy@3 | 0.5335 |
|
406 |
+
| dot_accuracy@5 | 0.5933 |
|
407 |
+
| dot_accuracy@10 | 0.6744 |
|
408 |
+
| dot_precision@1 | 0.3964 |
|
409 |
+
| dot_precision@3 | 0.1778 |
|
410 |
+
| dot_precision@5 | 0.1187 |
|
411 |
+
| dot_precision@10 | 0.0674 |
|
412 |
+
| dot_recall@1 | 0.3964 |
|
413 |
+
| dot_recall@3 | 0.5335 |
|
414 |
+
| dot_recall@5 | 0.5933 |
|
415 |
+
| dot_recall@10 | 0.6744 |
|
416 |
+
| dot_ndcg@10 | 0.5275 |
|
417 |
+
| dot_mrr@10 | 0.4815 |
|
418 |
+
| dot_map@100 | 0.4885 |
|
419 |
|
420 |
<!--
|
421 |
## Bias, Risks and Limitations
|
|
|
490 |
- `per_device_train_batch_size`: 128
|
491 |
- `per_device_eval_batch_size`: 128
|
492 |
- `learning_rate`: 2e-05
|
493 |
+
- `num_train_epochs`: 6
|
494 |
- `warmup_ratio`: 0.1
|
495 |
- `fp16`: True
|
496 |
- `load_best_model_at_end`: True
|
|
|
515 |
- `adam_beta2`: 0.999
|
516 |
- `adam_epsilon`: 1e-08
|
517 |
- `max_grad_norm`: 1.0
|
518 |
+
- `num_train_epochs`: 6
|
519 |
- `max_steps`: -1
|
520 |
- `lr_scheduler_type`: linear
|
521 |
- `lr_scheduler_kwargs`: {}
|
|
|
613 |
### Training Logs
|
614 |
| Epoch | Step | Training Loss | loss | msmarco-distilbert-base-v2_cosine_map@100 |
|
615 |
|:----------:|:--------:|:-------------:|:----------:|:-----------------------------------------:|
|
616 |
+
| 0 | 0 | - | - | 0.4145 |
|
617 |
+
| 0.1453 | 100 | 1.7626 | - | - |
|
618 |
+
| 0.2907 | 200 | 0.9595 | - | - |
|
619 |
+
| 0.4360 | 300 | 0.7263 | - | - |
|
620 |
+
| 0.5814 | 400 | 0.6187 | - | - |
|
621 |
+
| 0.7267 | 500 | 0.5571 | - | - |
|
622 |
+
| 0.8721 | 600 | 0.4885 | - | - |
|
623 |
+
| 1.0131 | 697 | - | 0.3676 | - |
|
624 |
+
| 1.0044 | 700 | 0.4283 | - | - |
|
625 |
+
| 1.1497 | 800 | 0.3956 | - | - |
|
626 |
+
| 1.2951 | 900 | 0.2941 | - | - |
|
627 |
+
| 1.4404 | 1000 | 0.2437 | - | - |
|
628 |
+
| 1.5858 | 1100 | 0.1988 | - | - |
|
629 |
+
| 1.7311 | 1200 | 0.185 | - | - |
|
630 |
+
| 1.8765 | 1300 | 0.1571 | - | - |
|
631 |
+
| 2.0131 | 1394 | - | 0.2679 | - |
|
632 |
+
| 2.0087 | 1400 | 0.1409 | - | - |
|
633 |
+
| 2.1541 | 1500 | 0.1368 | - | - |
|
634 |
+
| 2.2994 | 1600 | 0.111 | - | - |
|
635 |
+
| 2.4448 | 1700 | 0.0994 | - | - |
|
636 |
+
| 2.5901 | 1800 | 0.0837 | - | - |
|
637 |
+
| 2.7355 | 1900 | 0.076 | - | - |
|
638 |
+
| 2.8808 | 2000 | 0.0645 | - | - |
|
639 |
+
| 3.0131 | 2091 | - | 0.2412 | - |
|
640 |
+
| 3.0131 | 2100 | 0.0607 | - | - |
|
641 |
+
| 3.1584 | 2200 | 0.0609 | - | - |
|
642 |
+
| 3.3038 | 2300 | 0.0503 | - | - |
|
643 |
+
| 3.4491 | 2400 | 0.0483 | - | - |
|
644 |
+
| 3.5945 | 2500 | 0.0402 | - | - |
|
645 |
+
| 3.7398 | 2600 | 0.0397 | - | - |
|
646 |
+
| 3.8852 | 2700 | 0.0305 | - | - |
|
647 |
+
| 4.0131 | 2788 | - | 0.2196 | - |
|
648 |
+
| 4.0174 | 2800 | 0.0304 | - | - |
|
649 |
+
| 4.1628 | 2900 | 0.0307 | - | - |
|
650 |
+
| 4.3081 | 3000 | 0.0256 | - | - |
|
651 |
+
| 4.4535 | 3100 | 0.0258 | - | - |
|
652 |
+
| 4.5988 | 3200 | 0.0212 | - | - |
|
653 |
+
| 4.7442 | 3300 | 0.0213 | - | - |
|
654 |
+
| 4.8895 | 3400 | 0.0174 | - | - |
|
655 |
+
| 5.0131 | 3485 | - | 0.2036 | - |
|
656 |
+
| 5.0218 | 3500 | 0.0191 | - | - |
|
657 |
+
| 5.1672 | 3600 | 0.0198 | - | - |
|
658 |
+
| 5.3125 | 3700 | 0.0161 | - | - |
|
659 |
+
| 5.4578 | 3800 | 0.0166 | - | - |
|
660 |
+
| 5.6032 | 3900 | 0.0135 | - | - |
|
661 |
+
| 5.7485 | 4000 | 0.0145 | - | - |
|
662 |
+
| 5.8939 | 4100 | 0.0129 | - | - |
|
663 |
+
| **5.9346** | **4128** | **-** | **0.1966** | **0.489** |
|
664 |
|
665 |
* The bold row denotes the saved checkpoint.
|
666 |
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 265462608
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ff4f47578afdd7445b15b66710dfe43895a5be76181400182d87f9d1700cd4f
|
3 |
size 265462608
|