kperkins411
commited on
Commit
•
1567d8d
1
Parent(s):
9d55b1a
Add new SentenceTransformer model.
Browse files- README.md +88 -89
- config.json +1 -1
- model.safetensors +1 -1
- tokenizer_config.json +7 -0
README.md
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
---
|
2 |
-
base_model: sentence-transformers/msmarco-distilbert-base-v2
|
3 |
datasets: []
|
4 |
language: []
|
5 |
library_name: sentence-transformers
|
@@ -188,7 +187,7 @@ widget:
|
|
188 |
and/or any of its affiliates and the directors, officers and employees of Domini
|
189 |
and/or any of its affiliates.
|
190 |
model-index:
|
191 |
-
- name: SentenceTransformer
|
192 |
results:
|
193 |
- task:
|
194 |
type: information-retrieval
|
@@ -198,106 +197,106 @@ model-index:
|
|
198 |
type: msmarco-distilbert-base-v2
|
199 |
metrics:
|
200 |
- type: cosine_accuracy@1
|
201 |
-
value: 0.
|
202 |
name: Cosine Accuracy@1
|
203 |
- type: cosine_accuracy@3
|
204 |
-
value: 0.
|
205 |
name: Cosine Accuracy@3
|
206 |
- type: cosine_accuracy@5
|
207 |
-
value: 0.
|
208 |
name: Cosine Accuracy@5
|
209 |
- type: cosine_accuracy@10
|
210 |
-
value: 0.
|
211 |
name: Cosine Accuracy@10
|
212 |
- type: cosine_precision@1
|
213 |
-
value: 0.
|
214 |
name: Cosine Precision@1
|
215 |
- type: cosine_precision@3
|
216 |
-
value: 0.
|
217 |
name: Cosine Precision@3
|
218 |
- type: cosine_precision@5
|
219 |
-
value: 0.
|
220 |
name: Cosine Precision@5
|
221 |
- type: cosine_precision@10
|
222 |
-
value: 0.
|
223 |
name: Cosine Precision@10
|
224 |
- type: cosine_recall@1
|
225 |
-
value: 0.
|
226 |
name: Cosine Recall@1
|
227 |
- type: cosine_recall@3
|
228 |
-
value: 0.
|
229 |
name: Cosine Recall@3
|
230 |
- type: cosine_recall@5
|
231 |
-
value: 0.
|
232 |
name: Cosine Recall@5
|
233 |
- type: cosine_recall@10
|
234 |
-
value: 0.
|
235 |
name: Cosine Recall@10
|
236 |
- type: cosine_ndcg@10
|
237 |
-
value: 0.
|
238 |
name: Cosine Ndcg@10
|
239 |
- type: cosine_mrr@10
|
240 |
-
value: 0.
|
241 |
name: Cosine Mrr@10
|
242 |
- type: cosine_map@100
|
243 |
-
value: 0.
|
244 |
name: Cosine Map@100
|
245 |
- type: dot_accuracy@1
|
246 |
-
value: 0.
|
247 |
name: Dot Accuracy@1
|
248 |
- type: dot_accuracy@3
|
249 |
-
value: 0.
|
250 |
name: Dot Accuracy@3
|
251 |
- type: dot_accuracy@5
|
252 |
-
value: 0.
|
253 |
name: Dot Accuracy@5
|
254 |
- type: dot_accuracy@10
|
255 |
-
value: 0.
|
256 |
name: Dot Accuracy@10
|
257 |
- type: dot_precision@1
|
258 |
-
value: 0.
|
259 |
name: Dot Precision@1
|
260 |
- type: dot_precision@3
|
261 |
-
value: 0.
|
262 |
name: Dot Precision@3
|
263 |
- type: dot_precision@5
|
264 |
-
value: 0.
|
265 |
name: Dot Precision@5
|
266 |
- type: dot_precision@10
|
267 |
-
value: 0.
|
268 |
name: Dot Precision@10
|
269 |
- type: dot_recall@1
|
270 |
-
value: 0.
|
271 |
name: Dot Recall@1
|
272 |
- type: dot_recall@3
|
273 |
-
value: 0.
|
274 |
name: Dot Recall@3
|
275 |
- type: dot_recall@5
|
276 |
-
value: 0.
|
277 |
name: Dot Recall@5
|
278 |
- type: dot_recall@10
|
279 |
-
value: 0.
|
280 |
name: Dot Recall@10
|
281 |
- type: dot_ndcg@10
|
282 |
-
value: 0.
|
283 |
name: Dot Ndcg@10
|
284 |
- type: dot_mrr@10
|
285 |
-
value: 0.
|
286 |
name: Dot Mrr@10
|
287 |
- type: dot_map@100
|
288 |
-
value: 0.
|
289 |
name: Dot Map@100
|
290 |
---
|
291 |
|
292 |
-
# SentenceTransformer
|
293 |
|
294 |
-
This is a [sentence-transformers](https://www.SBERT.net) model
|
295 |
|
296 |
## Model Details
|
297 |
|
298 |
### Model Description
|
299 |
- **Model Type:** Sentence Transformer
|
300 |
-
- **Base model:** [
|
301 |
- **Maximum Sequence Length:** 350 tokens
|
302 |
- **Output Dimensionality:** 768 tokens
|
303 |
- **Similarity Function:** Cosine Similarity
|
@@ -386,36 +385,36 @@ You can finetune this model on your own dataset.
|
|
386 |
|
387 |
| Metric | Value |
|
388 |
|:--------------------|:-----------|
|
389 |
-
| cosine_accuracy@1 | 0.
|
390 |
-
| cosine_accuracy@3 | 0.
|
391 |
-
| cosine_accuracy@5 | 0.
|
392 |
-
| cosine_accuracy@10 | 0.
|
393 |
-
| cosine_precision@1 | 0.
|
394 |
-
| cosine_precision@3 | 0.
|
395 |
-
| cosine_precision@5 | 0.
|
396 |
-
| cosine_precision@10 | 0.
|
397 |
-
| cosine_recall@1 | 0.
|
398 |
-
| cosine_recall@3 | 0.
|
399 |
-
| cosine_recall@5 | 0.
|
400 |
-
| cosine_recall@10 | 0.
|
401 |
-
| cosine_ndcg@10 | 0.
|
402 |
-
| cosine_mrr@10 | 0.
|
403 |
-
| **cosine_map@100** | **0.
|
404 |
-
| dot_accuracy@1 | 0.
|
405 |
-
| dot_accuracy@3 | 0.
|
406 |
-
| dot_accuracy@5 | 0.
|
407 |
-
| dot_accuracy@10 | 0.
|
408 |
-
| dot_precision@1 | 0.
|
409 |
-
| dot_precision@3 | 0.
|
410 |
-
| dot_precision@5 | 0.
|
411 |
-
| dot_precision@10 | 0.
|
412 |
-
| dot_recall@1 | 0.
|
413 |
-
| dot_recall@3 | 0.
|
414 |
-
| dot_recall@5 | 0.
|
415 |
-
| dot_recall@10 | 0.
|
416 |
-
| dot_ndcg@10 | 0.
|
417 |
-
| dot_mrr@10 | 0.
|
418 |
-
| dot_map@100 | 0.
|
419 |
|
420 |
<!--
|
421 |
## Bias, Risks and Limitations
|
@@ -612,30 +611,30 @@ You can finetune this model on your own dataset.
|
|
612 |
### Training Logs
|
613 |
| Epoch | Step | Training Loss | loss | msmarco-distilbert-base-v2_cosine_map@100 |
|
614 |
|:----------:|:--------:|:-------------:|:----------:|:-----------------------------------------:|
|
615 |
-
| 0 | 0 | - | - | 0.
|
616 |
-
| 0.1453 | 100 |
|
617 |
-
| 0.2907 | 200 | 0.
|
618 |
-
| 0.4360 | 300 | 0.
|
619 |
-
| 0.5814 | 400 | 0.
|
620 |
-
| 0.7267 | 500 | 0.
|
621 |
-
| 0.8721 | 600 | 0.
|
622 |
-
| 1.0131 | 697 | - | 0.
|
623 |
-
| 1.0044 | 700 | 0.
|
624 |
-
| 1.1497 | 800 | 0.
|
625 |
-
| 1.2951 | 900 | 0.
|
626 |
-
| 1.4404 | 1000 | 0.
|
627 |
-
| 1.5858 | 1100 | 0.
|
628 |
-
| 1.7311 | 1200 | 0.
|
629 |
-
| 1.8765 | 1300 | 0.
|
630 |
-
| 2.0131 | 1394 | - | 0.
|
631 |
-
| 2.0087 | 1400 | 0.
|
632 |
-
| 2.1541 | 1500 | 0.
|
633 |
-
| 2.2994 | 1600 | 0.
|
634 |
-
| 2.4448 | 1700 | 0.
|
635 |
-
| 2.5901 | 1800 | 0.
|
636 |
-
| 2.7355 | 1900 | 0.
|
637 |
-
| 2.8808 | 2000 | 0.
|
638 |
-
| **2.9738** | **2064** | **-** | **0.
|
639 |
|
640 |
* The bold row denotes the saved checkpoint.
|
641 |
|
|
|
1 |
---
|
|
|
2 |
datasets: []
|
3 |
language: []
|
4 |
library_name: sentence-transformers
|
|
|
187 |
and/or any of its affiliates and the directors, officers and employees of Domini
|
188 |
and/or any of its affiliates.
|
189 |
model-index:
|
190 |
+
- name: SentenceTransformer
|
191 |
results:
|
192 |
- task:
|
193 |
type: information-retrieval
|
|
|
197 |
type: msmarco-distilbert-base-v2
|
198 |
metrics:
|
199 |
- type: cosine_accuracy@1
|
200 |
+
value: 0.3953048087845513
|
201 |
name: Cosine Accuracy@1
|
202 |
- type: cosine_accuracy@3
|
203 |
+
value: 0.5342673229837183
|
204 |
name: Cosine Accuracy@3
|
205 |
- type: cosine_accuracy@5
|
206 |
+
value: 0.5914426353653919
|
207 |
name: Cosine Accuracy@5
|
208 |
- type: cosine_accuracy@10
|
209 |
+
value: 0.66565694812571
|
210 |
name: Cosine Accuracy@10
|
211 |
- type: cosine_precision@1
|
212 |
+
value: 0.3953048087845513
|
213 |
name: Cosine Precision@1
|
214 |
- type: cosine_precision@3
|
215 |
+
value: 0.17808910766123942
|
216 |
name: Cosine Precision@3
|
217 |
- type: cosine_precision@5
|
218 |
+
value: 0.11828852707307837
|
219 |
name: Cosine Precision@5
|
220 |
- type: cosine_precision@10
|
221 |
+
value: 0.06656569481257099
|
222 |
name: Cosine Precision@10
|
223 |
- type: cosine_recall@1
|
224 |
+
value: 0.3953048087845513
|
225 |
name: Cosine Recall@1
|
226 |
- type: cosine_recall@3
|
227 |
+
value: 0.5342673229837183
|
228 |
name: Cosine Recall@3
|
229 |
- type: cosine_recall@5
|
230 |
+
value: 0.5914426353653919
|
231 |
name: Cosine Recall@5
|
232 |
- type: cosine_recall@10
|
233 |
+
value: 0.66565694812571
|
234 |
name: Cosine Recall@10
|
235 |
- type: cosine_ndcg@10
|
236 |
+
value: 0.5240873176000084
|
237 |
name: Cosine Ndcg@10
|
238 |
- type: cosine_mrr@10
|
239 |
+
value: 0.4794995582481382
|
240 |
name: Cosine Mrr@10
|
241 |
- type: cosine_map@100
|
242 |
+
value: 0.4872380542829767
|
243 |
name: Cosine Map@100
|
244 |
- type: dot_accuracy@1
|
245 |
+
value: 0.3934115865202575
|
246 |
name: Dot Accuracy@1
|
247 |
- type: dot_accuracy@3
|
248 |
+
value: 0.5312381673608482
|
249 |
name: Dot Accuracy@3
|
250 |
- type: dot_accuracy@5
|
251 |
+
value: 0.5899280575539568
|
252 |
name: Dot Accuracy@5
|
253 |
- type: dot_accuracy@10
|
254 |
+
value: 0.6648996592199924
|
255 |
name: Dot Accuracy@10
|
256 |
- type: dot_precision@1
|
257 |
+
value: 0.3934115865202575
|
258 |
name: Dot Precision@1
|
259 |
- type: dot_precision@3
|
260 |
+
value: 0.1770793891202827
|
261 |
name: Dot Precision@3
|
262 |
- type: dot_precision@5
|
263 |
+
value: 0.11798561151079137
|
264 |
name: Dot Precision@5
|
265 |
- type: dot_precision@10
|
266 |
+
value: 0.06648996592199924
|
267 |
name: Dot Precision@10
|
268 |
- type: dot_recall@1
|
269 |
+
value: 0.3934115865202575
|
270 |
name: Dot Recall@1
|
271 |
- type: dot_recall@3
|
272 |
+
value: 0.5312381673608482
|
273 |
name: Dot Recall@3
|
274 |
- type: dot_recall@5
|
275 |
+
value: 0.5899280575539568
|
276 |
name: Dot Recall@5
|
277 |
- type: dot_recall@10
|
278 |
+
value: 0.6648996592199924
|
279 |
name: Dot Recall@10
|
280 |
- type: dot_ndcg@10
|
281 |
+
value: 0.5224316548033627
|
282 |
name: Dot Ndcg@10
|
283 |
- type: dot_mrr@10
|
284 |
+
value: 0.4775905591316421
|
285 |
name: Dot Mrr@10
|
286 |
- type: dot_map@100
|
287 |
+
value: 0.485319730256097
|
288 |
name: Dot Map@100
|
289 |
---
|
290 |
|
291 |
+
# SentenceTransformer
|
292 |
|
293 |
+
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
294 |
|
295 |
## Model Details
|
296 |
|
297 |
### Model Description
|
298 |
- **Model Type:** Sentence Transformer
|
299 |
+
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
300 |
- **Maximum Sequence Length:** 350 tokens
|
301 |
- **Output Dimensionality:** 768 tokens
|
302 |
- **Similarity Function:** Cosine Similarity
|
|
|
385 |
|
386 |
| Metric | Value |
|
387 |
|:--------------------|:-----------|
|
388 |
+
| cosine_accuracy@1 | 0.3953 |
|
389 |
+
| cosine_accuracy@3 | 0.5343 |
|
390 |
+
| cosine_accuracy@5 | 0.5914 |
|
391 |
+
| cosine_accuracy@10 | 0.6657 |
|
392 |
+
| cosine_precision@1 | 0.3953 |
|
393 |
+
| cosine_precision@3 | 0.1781 |
|
394 |
+
| cosine_precision@5 | 0.1183 |
|
395 |
+
| cosine_precision@10 | 0.0666 |
|
396 |
+
| cosine_recall@1 | 0.3953 |
|
397 |
+
| cosine_recall@3 | 0.5343 |
|
398 |
+
| cosine_recall@5 | 0.5914 |
|
399 |
+
| cosine_recall@10 | 0.6657 |
|
400 |
+
| cosine_ndcg@10 | 0.5241 |
|
401 |
+
| cosine_mrr@10 | 0.4795 |
|
402 |
+
| **cosine_map@100** | **0.4872** |
|
403 |
+
| dot_accuracy@1 | 0.3934 |
|
404 |
+
| dot_accuracy@3 | 0.5312 |
|
405 |
+
| dot_accuracy@5 | 0.5899 |
|
406 |
+
| dot_accuracy@10 | 0.6649 |
|
407 |
+
| dot_precision@1 | 0.3934 |
|
408 |
+
| dot_precision@3 | 0.1771 |
|
409 |
+
| dot_precision@5 | 0.118 |
|
410 |
+
| dot_precision@10 | 0.0665 |
|
411 |
+
| dot_recall@1 | 0.3934 |
|
412 |
+
| dot_recall@3 | 0.5312 |
|
413 |
+
| dot_recall@5 | 0.5899 |
|
414 |
+
| dot_recall@10 | 0.6649 |
|
415 |
+
| dot_ndcg@10 | 0.5224 |
|
416 |
+
| dot_mrr@10 | 0.4776 |
|
417 |
+
| dot_map@100 | 0.4853 |
|
418 |
|
419 |
<!--
|
420 |
## Bias, Risks and Limitations
|
|
|
611 |
### Training Logs
|
612 |
| Epoch | Step | Training Loss | loss | msmarco-distilbert-base-v2_cosine_map@100 |
|
613 |
|:----------:|:--------:|:-------------:|:----------:|:-----------------------------------------:|
|
614 |
+
| 0 | 0 | - | - | 0.4899 |
|
615 |
+
| 0.1453 | 100 | 0.0787 | - | - |
|
616 |
+
| 0.2907 | 200 | 0.0503 | - | - |
|
617 |
+
| 0.4360 | 300 | 0.0529 | - | - |
|
618 |
+
| 0.5814 | 400 | 0.0636 | - | - |
|
619 |
+
| 0.7267 | 500 | 0.0783 | - | - |
|
620 |
+
| 0.8721 | 600 | 0.0765 | - | - |
|
621 |
+
| 1.0131 | 697 | - | 0.2284 | - |
|
622 |
+
| 1.0044 | 700 | 0.0776 | - | - |
|
623 |
+
| 1.1497 | 800 | 0.0624 | - | - |
|
624 |
+
| 1.2951 | 900 | 0.0289 | - | - |
|
625 |
+
| 1.4404 | 1000 | 0.0244 | - | - |
|
626 |
+
| 1.5858 | 1100 | 0.0256 | - | - |
|
627 |
+
| 1.7311 | 1200 | 0.0364 | - | - |
|
628 |
+
| 1.8765 | 1300 | 0.0334 | - | - |
|
629 |
+
| 2.0131 | 1394 | - | 0.2175 | - |
|
630 |
+
| 2.0087 | 1400 | 0.0342 | - | - |
|
631 |
+
| 2.1541 | 1500 | 0.0274 | - | - |
|
632 |
+
| 2.2994 | 1600 | 0.0153 | - | - |
|
633 |
+
| 2.4448 | 1700 | 0.0167 | - | - |
|
634 |
+
| 2.5901 | 1800 | 0.0178 | - | - |
|
635 |
+
| 2.7355 | 1900 | 0.0221 | - | - |
|
636 |
+
| 2.8808 | 2000 | 0.0227 | - | - |
|
637 |
+
| **2.9738** | **2064** | **-** | **0.1821** | **0.4872** |
|
638 |
|
639 |
* The bold row denotes the saved checkpoint.
|
640 |
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"activation": "gelu",
|
4 |
"architectures": [
|
5 |
"DistilBertModel"
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "models/msmarco-distilbert-base-v2_triplet_legal/final",
|
3 |
"activation": "gelu",
|
4 |
"architectures": [
|
5 |
"DistilBertModel"
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 265462608
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1796c6e005742413b753de6f83fdd6c3515b94cb1fce753d6adae3c90fe9191d
|
3 |
size 265462608
|
tokenizer_config.json
CHANGED
@@ -46,12 +46,19 @@
|
|
46 |
"do_basic_tokenize": true,
|
47 |
"do_lower_case": true,
|
48 |
"mask_token": "[MASK]",
|
|
|
49 |
"model_max_length": 350,
|
50 |
"never_split": null,
|
|
|
51 |
"pad_token": "[PAD]",
|
|
|
|
|
52 |
"sep_token": "[SEP]",
|
|
|
53 |
"strip_accents": null,
|
54 |
"tokenize_chinese_chars": true,
|
55 |
"tokenizer_class": "DistilBertTokenizer",
|
|
|
|
|
56 |
"unk_token": "[UNK]"
|
57 |
}
|
|
|
46 |
"do_basic_tokenize": true,
|
47 |
"do_lower_case": true,
|
48 |
"mask_token": "[MASK]",
|
49 |
+
"max_length": 350,
|
50 |
"model_max_length": 350,
|
51 |
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
"strip_accents": null,
|
59 |
"tokenize_chinese_chars": true,
|
60 |
"tokenizer_class": "DistilBertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
"unk_token": "[UNK]"
|
64 |
}
|