johnnv's picture
Update README.md
ab683ac verified
---
license: apache-2.0
pipeline_tag: image-classification
---
Pytorch weights for Kornia ViT converted from the original google JAX vision-transformer repo.
```python
from kornia.contrib import VisionTransformer
vit_model = VisionTransformer.from_config('vit_b/16', pretrained=True)
...
```
Original weights from [AugReg](https://arxiv.org/abs/2106.10270) as recommended by [google research vision transformer repo](https://github.com/google-research/vision_transformer): This weight is based on the
[AugReg ViT_B/16 pretrained on imagenet21k](https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz)
Weights converted to PyTorch for Kornia ViT implementation (by [@gau-nernst](https://github.com/gau-nernst) in [kornia/kornia#2786](https://github.com/kornia/kornia/pull/2786#discussion_r1482339811))
<details>
<summary>Convert jax checkpoint function</summary>
```
def convert_jax_checkpoint(np_state_dict: dict[str, np.ndarray]):
def get_weight(key: str) -> torch.Tensor:
return torch.from_numpy(np_state_dict[key])
state_dict = dict()
state_dict["patch_embedding.cls_token"] = get_weight("cls")
state_dict["patch_embedding.backbone.weight"] = get_weight("embedding/kernel").permute(3, 2, 0, 1) # conv »
state_dict["patch_embedding.backbone.bias"] = get_weight("embedding/bias")
state_dict["patch_embedding.positions"] = get_weight("Transformer/posembed_input/pos_embedding").squeeze(0)
# for i, block in enumerate(self.encoder.blocks):
for i in range(100):
prefix1 = f"encoder.blocks.{i}"
prefix2 = f"Transformer/encoderblock_{i}"
if f"{prefix2}/LayerNorm_0/scale" not in np_state_dict:
break
state_dict[f"{prefix1}.0.fn.0.weight"] = get_weight(f"{prefix2}/LayerNorm_0/scale")
state_dict[f"{prefix1}.0.fn.0.bias"] = get_weight(f"{prefix2}/LayerNorm_0/bias")
mha_prefix = f"{prefix2}/MultiHeadDotProductAttention_1"
qkv_weight = [get_weight(f"{mha_prefix}/{x}/kernel") for x in ["query", "key", "value"]]
qkv_bias = [get_weight(f"{mha_prefix}/{x}/bias") for x in ["query", "key", "value"]]
state_dict[f"{prefix1}.0.fn.1.qkv.weight"] = torch.cat(qkv_weight, 1).flatten(1).T
state_dict[f"{prefix1}.0.fn.1.qkv.bias"] = torch.cat(qkv_bias, 0).flatten()
state_dict[f"{prefix1}.0.fn.1.projection.weight"] = get_weight(f"{mha_prefix}/out/kernel").flatten(0, 1»
state_dict[f"{prefix1}.0.fn.1.projection.bias"] = get_weight(f"{mha_prefix}/out/bias")
state_dict[f"{prefix1}.1.fn.0.weight"] = get_weight(f"{prefix2}/LayerNorm_2/scale")
state_dict[f"{prefix1}.1.fn.0.bias"] = get_weight(f"{prefix2}/LayerNorm_2/bias")
state_dict[f"{prefix1}.1.fn.1.0.weight"] = get_weight(f"{prefix2}/MlpBlock_3/Dense_0/kernel").T
state_dict[f"{prefix1}.1.fn.1.0.bias"] = get_weight(f"{prefix2}/MlpBlock_3/Dense_0/bias")
state_dict[f"{prefix1}.1.fn.1.3.weight"] = get_weight(f"{prefix2}/MlpBlock_3/Dense_1/kernel").T
state_dict[f"{prefix1}.1.fn.1.3.bias"] = get_weight(f"{prefix2}/MlpBlock_3/Dense_1/bias")
state_dict["norm.weight"] = get_weight("Transformer/encoder_norm/scale")
state_dict["norm.bias"] = get_weight("Transformer/encoder_norm/bias")
return state_dict
```
</details>