Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Qwen/Qwen2.5-1.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 97b19c10e7fa0508_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/97b19c10e7fa0508_train_data.json
  type:
    field_input: text
    field_instruction: title
    field_output: review
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: false
group_by_length: false
hub_model_id: kooff11/ca982efa-b911-43d7-8ec0-0b76f01c778c
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- v_proj
lr_scheduler: cosine
max_memory:
  0: 130GiB
  1: 130GiB
max_steps: 20
micro_batch_size: 2
mlflow_experiment_name: /tmp/97b19c10e7fa0508_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
quantization_config:
  llm_int8_enable_fp32_cpu_offload: false
  load_in_8bit: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 4056
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ca982efa-b911-43d7-8ec0-0b76f01c778c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ca982efa-b911-43d7-8ec0-0b76f01c778c
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

ca982efa-b911-43d7-8ec0-0b76f01c778c

This model is a fine-tuned version of Qwen/Qwen2.5-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0511

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 128
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 20

Training results

Training Loss Epoch Step Validation Loss
0.2534 0.0007 1 0.3415
0.2775 0.0034 5 0.3164
0.1453 0.0067 10 0.1880
0.0583 0.0101 15 0.0667
0.0457 0.0134 20 0.0511

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
11
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for kooff11/ca982efa-b911-43d7-8ec0-0b76f01c778c

Base model

Qwen/Qwen2.5-1.5B
Adapter
(157)
this model