koesn's picture
Update README.md
5dd1e29 verified
|
raw
history blame
2.86 kB
metadata
license: apache-2.0

Mistral-7B-v0.1

Description

This repo contains GGUF format model files for Mistral-7B-v0.1.

Files Provided

Name Quant Bits File Size Remark
mistral-7b-v0.1.IQ3_XXS.gguf IQ3_XXS 3 3.02 GB 3.06 bpw quantization
mistral-7b-v0.1.IQ3_S.gguf IQ3_S 3 3.18 GB 3.44 bpw quantization
mistral-7b-v0.1.IQ3_M.gguf IQ3_M 3 3.28 GB 3.66 bpw quantization mix
mistral-7b-v0.1.IQ4_NL.gguf IQ4_NL 4 4.16 GB 4.25 bpw non-linear quantization
mistral-7b-v0.1.Q4_K_M.gguf Q4_K_M 4 4.37 GB 3.80G, +0.0532 ppl
mistral-7b-v0.1.Q5_K_M.gguf Q5_K_M 5 5.13 GB 4.45G, +0.0122 ppl
mistral-7b-v0.1.Q6_K.gguf Q6_K 6 5.94 GB 5.15G, +0.0008 ppl
mistral-7b-v0.1.Q8_0.gguf Q8_0 8 7.70 GB 6.70G, +0.0004 ppl

Parameters

path type architecture rope_theta sliding_win max_pos_embed
mistralai/Mistral-7B-v0.1 mistral MistralForCausalLM 10000.0 4096 32768

Original Model Card


license: apache-2.0 pipeline_tag: text-generation language: - en tags: - pretrained inference: parameters: temperature: 0.7

Model Card for Mistral-7B-v0.1

The Mistral-7B-v0.1 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.1 outperforms Llama 2 13B on all benchmarks we tested.

For full details of this model please read our paper and release blog post.

Model Architecture

Mistral-7B-v0.1 is a transformer model, with the following architecture choices:

  • Grouped-Query Attention
  • Sliding-Window Attention
  • Byte-fallback BPE tokenizer

Troubleshooting

  • If you see the following error:
KeyError: 'mistral'
  • Or:
NotImplementedError: Cannot copy out of meta tensor; no data!

Ensure you are utilizing a stable version of Transformers, 4.34.0 or newer.

Notice

Mistral 7B is a pretrained base model and therefore does not have any moderation mechanisms.

The Mistral AI Team

Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.