|
--- |
|
license: mit |
|
tags: |
|
- mergekit |
|
- merge |
|
base_model: |
|
- moreh/MoMo-70B-lora-1.8.6-DPO |
|
- moreh/MoMo-70B-lora-1.8.4-DPO |
|
--- |
|
|
|
# MoMo-70B-lora-1.8.6-DPO based model with gradient slerp |
|
|
|
This is an English mixed Model based on |
|
* [moreh/MoMo-70B-lora-1.8.6-DPO] |
|
|
|
gpu code example |
|
|
|
``` |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import math |
|
|
|
## v2 models |
|
model_path = "kodonho/kodonho/Momo-70b-DPO-mixed" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True |
|
) |
|
print(model) |
|
prompt = input("please input prompt:") |
|
while len(prompt) > 0: |
|
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda") |
|
|
|
generation_output = model.generate( |
|
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 |
|
) |
|
print(tokenizer.decode(generation_output[0])) |
|
prompt = input("please input prompt:") |
|
``` |