t5-base-finetuned-xsum-long

This model is a fine-tuned version of t5-base on the None dataset. It achieves the following results on the evaluation set:

  • eval_loss: 0.5249
  • eval_rouge1: 15.3213
  • eval_rouge2: 12.6162
  • eval_rougeL: 15.3078
  • eval_rougeLsum: 15.2948
  • eval_gen_len: 19.0
  • eval_runtime: 50.2149
  • eval_samples_per_second: 2.41
  • eval_steps_per_second: 2.41
  • epoch: 9.0
  • step: 3690

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 500

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
10
Safetensors
Model size
223M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kmarx-kmarx-kmarx/t5-base-finetuned-xsum-long

Base model

google-t5/t5-base
Finetuned
(435)
this model