segformer-b0-scene-parse-150-lr-3-e-30

This model is a fine-tuned version of DiTo97/binarization-segformer-b3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1448
  • Mean Iou: 0.5020
  • Mean Accuracy: 0.5211
  • Overall Accuracy: 0.9636
  • Per Category Iou: [0.04038452943608308, 0.9635414972513529]
  • Per Category Accuracy: [0.04908134789959329, 0.993061727806312]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
No log 1.0 112 0.1656 0.4844 0.5 0.9688 [0.0, 0.9687870873345269] [0.0, 1.0]
No log 2.0 224 0.1537 0.4844 0.5 0.9688 [0.0, 0.9687870873345269] [0.0, 1.0]
No log 3.0 336 0.1432 0.4844 0.5000 0.9688 [0.0, 0.9687868224249946] [0.0, 0.9999997265554673]
No log 4.0 448 0.1475 0.4850 0.5005 0.9686 [0.0013222566963458553, 0.9685858800631549] [0.0013324868788234735, 0.9997507279640349]
0.2536 5.0 560 0.1711 0.4845 0.5001 0.9687 [0.0003201696729864885, 0.9687338453238151] [0.0003208153122262885, 0.999935029579042]
0.2536 6.0 672 0.1638 0.4859 0.5015 0.9680 [0.0039027635518112448, 0.9679476439113655] [0.004022922169186793, 0.9990080526133531]
0.2536 7.0 784 0.1410 0.4869 0.5025 0.9685 [0.005323932455427736, 0.9684674246442314] [0.00540633211344301, 0.9995013465502566]
0.2536 8.0 896 0.1433 0.4844 0.5000 0.9688 [0.0, 0.9687869283888075] [0.0, 0.9999998359332805]
0.2055 9.0 1008 0.1506 0.4852 0.5008 0.9687 [0.0016878008192091351, 0.9687229148795367] [0.0016940406433959573, 0.999880887561577]
0.2055 10.0 1120 0.1453 0.4935 0.5096 0.9671 [0.020029693488101304, 0.9670700472858372] [0.021548943855622924, 0.9975562262116929]
0.2055 11.0 1232 0.1517 0.4845 0.5001 0.9688 [0.00011372817946646207, 0.9687905263352534] [0.00011372817946646207, 1.0]
0.2055 12.0 1344 0.1431 0.4857 0.5013 0.9687 [0.0027137294106124215, 0.9687079701798799] [0.002727778871680665, 0.9998331988350826]
0.2055 13.0 1456 0.1414 0.4933 0.5092 0.9672 [0.019346379945589794, 0.9672062565458419] [0.020713805582525918, 0.9977227539320777]
0.1952 14.0 1568 0.3025 0.4616 0.5605 0.8715 [0.052657461092701, 0.870574568072721] [0.2288363740061515, 0.8922046651387315]
0.1952 15.0 1680 0.1681 0.5006 0.5284 0.9534 [0.04789077424916502, 0.9533115168989387] [0.07506229588337938, 0.9817203423700553]
0.1952 16.0 1792 0.1410 0.4898 0.5053 0.9683 [0.011200534555931552, 0.9683138222802735] [0.011495033303684793, 0.9991528688378454]
0.1952 17.0 1904 0.1923 0.4976 0.5436 0.9374 [0.05802705926695029, 0.9371260247893431] [0.12360895159592887, 0.9635867588094531]
0.184 18.0 2016 0.1869 0.5041 0.5434 0.9464 [0.062043684016905756, 0.9461805831562268] [0.11365179486831295, 0.9732005216884172]
0.184 19.0 2128 0.1451 0.4945 0.5108 0.9667 [0.0224270262537552, 0.9666655973811165] [0.02448211242454899, 0.9970476740698675]
0.184 20.0 2240 0.1495 0.5034 0.5236 0.9627 [0.044245675510015896, 0.9625936882687055] [0.0553839259646526, 0.9918894164059282]
0.184 21.0 2352 0.1666 0.5074 0.5361 0.9560 [0.05892929526242253, 0.9558424300678736] [0.0883447287837535, 0.9839176332566303]
0.184 22.0 2464 0.1359 0.4952 0.5117 0.9661 [0.024373231478689413, 0.9660300331460354] [0.02716575797285461, 0.9963086081870168]
0.172 23.0 2576 0.1373 0.4947 0.5109 0.9667 [0.022619186612181357, 0.9667099473494948] [0.024663738024592447, 0.9970877610383542]
0.172 24.0 2688 0.1447 0.5034 0.5235 0.9628 [0.044081368434508966, 0.9626945273298088] [0.055020674764565694, 0.992004591243081]
0.172 25.0 2800 0.1408 0.5024 0.5209 0.9645 [0.04033427475747473, 0.9644272946188437] [0.04782864048994779, 0.9940135882244722]
0.172 26.0 2912 0.1487 0.5049 0.5279 0.9602 [0.049801967806652817, 0.9600934920373924] [0.06687047209076527, 0.9889578175713707]
0.1592 27.0 3024 0.1466 0.5061 0.5282 0.9614 [0.05082699206223086, 0.9613120480339439] [0.0662356312083704, 0.9902326706714988]
0.1592 28.0 3136 0.1395 0.5022 0.5210 0.9641 [0.04037355060044024, 0.9640515837293752] [0.04838200446765027, 0.9936091637606804]
0.1592 29.0 3248 0.1477 0.5054 0.5287 0.9601 [0.05084271645010736, 0.9600046044343804] [0.06849152300704096, 0.9888161186145507]
0.1592 30.0 3360 0.1448 0.5020 0.5211 0.9636 [0.04038452943608308, 0.9635414972513529] [0.04908134789959329, 0.993061727806312]

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
6
Safetensors
Model size
47.2M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for klentree/segformer-b0-scene-parse-150-lr-3-e-30

Finetuned
(9)
this model