segformer-b0-scene-parse-150-lr-3-e-30
This model is a fine-tuned version of DiTo97/binarization-segformer-b3 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1448
- Mean Iou: 0.5020
- Mean Accuracy: 0.5211
- Overall Accuracy: 0.9636
- Per Category Iou: [0.04038452943608308, 0.9635414972513529]
- Per Category Accuracy: [0.04908134789959329, 0.993061727806312]
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 112 | 0.1656 | 0.4844 | 0.5 | 0.9688 | [0.0, 0.9687870873345269] | [0.0, 1.0] |
No log | 2.0 | 224 | 0.1537 | 0.4844 | 0.5 | 0.9688 | [0.0, 0.9687870873345269] | [0.0, 1.0] |
No log | 3.0 | 336 | 0.1432 | 0.4844 | 0.5000 | 0.9688 | [0.0, 0.9687868224249946] | [0.0, 0.9999997265554673] |
No log | 4.0 | 448 | 0.1475 | 0.4850 | 0.5005 | 0.9686 | [0.0013222566963458553, 0.9685858800631549] | [0.0013324868788234735, 0.9997507279640349] |
0.2536 | 5.0 | 560 | 0.1711 | 0.4845 | 0.5001 | 0.9687 | [0.0003201696729864885, 0.9687338453238151] | [0.0003208153122262885, 0.999935029579042] |
0.2536 | 6.0 | 672 | 0.1638 | 0.4859 | 0.5015 | 0.9680 | [0.0039027635518112448, 0.9679476439113655] | [0.004022922169186793, 0.9990080526133531] |
0.2536 | 7.0 | 784 | 0.1410 | 0.4869 | 0.5025 | 0.9685 | [0.005323932455427736, 0.9684674246442314] | [0.00540633211344301, 0.9995013465502566] |
0.2536 | 8.0 | 896 | 0.1433 | 0.4844 | 0.5000 | 0.9688 | [0.0, 0.9687869283888075] | [0.0, 0.9999998359332805] |
0.2055 | 9.0 | 1008 | 0.1506 | 0.4852 | 0.5008 | 0.9687 | [0.0016878008192091351, 0.9687229148795367] | [0.0016940406433959573, 0.999880887561577] |
0.2055 | 10.0 | 1120 | 0.1453 | 0.4935 | 0.5096 | 0.9671 | [0.020029693488101304, 0.9670700472858372] | [0.021548943855622924, 0.9975562262116929] |
0.2055 | 11.0 | 1232 | 0.1517 | 0.4845 | 0.5001 | 0.9688 | [0.00011372817946646207, 0.9687905263352534] | [0.00011372817946646207, 1.0] |
0.2055 | 12.0 | 1344 | 0.1431 | 0.4857 | 0.5013 | 0.9687 | [0.0027137294106124215, 0.9687079701798799] | [0.002727778871680665, 0.9998331988350826] |
0.2055 | 13.0 | 1456 | 0.1414 | 0.4933 | 0.5092 | 0.9672 | [0.019346379945589794, 0.9672062565458419] | [0.020713805582525918, 0.9977227539320777] |
0.1952 | 14.0 | 1568 | 0.3025 | 0.4616 | 0.5605 | 0.8715 | [0.052657461092701, 0.870574568072721] | [0.2288363740061515, 0.8922046651387315] |
0.1952 | 15.0 | 1680 | 0.1681 | 0.5006 | 0.5284 | 0.9534 | [0.04789077424916502, 0.9533115168989387] | [0.07506229588337938, 0.9817203423700553] |
0.1952 | 16.0 | 1792 | 0.1410 | 0.4898 | 0.5053 | 0.9683 | [0.011200534555931552, 0.9683138222802735] | [0.011495033303684793, 0.9991528688378454] |
0.1952 | 17.0 | 1904 | 0.1923 | 0.4976 | 0.5436 | 0.9374 | [0.05802705926695029, 0.9371260247893431] | [0.12360895159592887, 0.9635867588094531] |
0.184 | 18.0 | 2016 | 0.1869 | 0.5041 | 0.5434 | 0.9464 | [0.062043684016905756, 0.9461805831562268] | [0.11365179486831295, 0.9732005216884172] |
0.184 | 19.0 | 2128 | 0.1451 | 0.4945 | 0.5108 | 0.9667 | [0.0224270262537552, 0.9666655973811165] | [0.02448211242454899, 0.9970476740698675] |
0.184 | 20.0 | 2240 | 0.1495 | 0.5034 | 0.5236 | 0.9627 | [0.044245675510015896, 0.9625936882687055] | [0.0553839259646526, 0.9918894164059282] |
0.184 | 21.0 | 2352 | 0.1666 | 0.5074 | 0.5361 | 0.9560 | [0.05892929526242253, 0.9558424300678736] | [0.0883447287837535, 0.9839176332566303] |
0.184 | 22.0 | 2464 | 0.1359 | 0.4952 | 0.5117 | 0.9661 | [0.024373231478689413, 0.9660300331460354] | [0.02716575797285461, 0.9963086081870168] |
0.172 | 23.0 | 2576 | 0.1373 | 0.4947 | 0.5109 | 0.9667 | [0.022619186612181357, 0.9667099473494948] | [0.024663738024592447, 0.9970877610383542] |
0.172 | 24.0 | 2688 | 0.1447 | 0.5034 | 0.5235 | 0.9628 | [0.044081368434508966, 0.9626945273298088] | [0.055020674764565694, 0.992004591243081] |
0.172 | 25.0 | 2800 | 0.1408 | 0.5024 | 0.5209 | 0.9645 | [0.04033427475747473, 0.9644272946188437] | [0.04782864048994779, 0.9940135882244722] |
0.172 | 26.0 | 2912 | 0.1487 | 0.5049 | 0.5279 | 0.9602 | [0.049801967806652817, 0.9600934920373924] | [0.06687047209076527, 0.9889578175713707] |
0.1592 | 27.0 | 3024 | 0.1466 | 0.5061 | 0.5282 | 0.9614 | [0.05082699206223086, 0.9613120480339439] | [0.0662356312083704, 0.9902326706714988] |
0.1592 | 28.0 | 3136 | 0.1395 | 0.5022 | 0.5210 | 0.9641 | [0.04037355060044024, 0.9640515837293752] | [0.04838200446765027, 0.9936091637606804] |
0.1592 | 29.0 | 3248 | 0.1477 | 0.5054 | 0.5287 | 0.9601 | [0.05084271645010736, 0.9600046044343804] | [0.06849152300704096, 0.9888161186145507] |
0.1592 | 30.0 | 3360 | 0.1448 | 0.5020 | 0.5211 | 0.9636 | [0.04038452943608308, 0.9635414972513529] | [0.04908134789959329, 0.993061727806312] |
Framework versions
- Transformers 4.37.0
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 6
Model tree for klentree/segformer-b0-scene-parse-150-lr-3-e-30
Base model
DiTo97/binarization-segformer-b3