|
--- |
|
library_name: transformers |
|
license: mit |
|
language: |
|
- th |
|
pipeline_tag: image-to-text |
|
base_model: Salesforce/blip2-opt-2.7b-coco |
|
--- |
|
|
|
## THAI-BLIP-2 |
|
fine-tuned for image captioning task from [blip2-opt-2.7b-coco](Salesforce/blip2-opt-2.7b-coco) with MSCOCO2017 thai caption. |
|
|
|
## How to use: |
|
```python |
|
from transformers import Blip2ForConditionalGeneration, Blip2Processor |
|
from PIL import Image |
|
import torch |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
processor = Blip2Processor.from_pretrained("kkatiz/THAI-BLIP-2") |
|
model = Blip2ForConditionalGeneration.from_pretrained("kkatiz/THAI-BLIP-2", device_map=device, torch_dtype=torch.bfloat16) |
|
|
|
img = Image.open("Your image...") |
|
inputs = processor(images=img, return_tensors="pt").to(device, torch.bfloat16) |
|
|
|
# Adjust your `max_length` |
|
generated_ids = model.generate(**inputs, max_length=20) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) |
|
print(generated_text) |
|
``` |