wav2vec2-large-xlsr-53-punjabi

This model is a fine-tuned version of Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10 on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2101
  • Wer: 0.4939
  • Cer: 0.2238

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with split test
python eval.py --model_id kingabzpro/wav2vec2-large-xlsr-53-punjabi --dataset mozilla-foundation/common_voice_8_0 --config pa-IN --split test

Inference With LM

import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "kingabzpro/wav2vec2-large-xlsr-53-punjabi"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "pa-IN", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
    logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
11.0563 3.7 100 1.9492 0.7123 0.3872
1.6715 7.41 200 1.3142 0.6433 0.3086
0.9117 11.11 300 1.2733 0.5657 0.2627
0.666 14.81 400 1.2730 0.5598 0.2534
0.4225 18.52 500 1.2548 0.5300 0.2399
0.3209 22.22 600 1.2166 0.5229 0.2372
0.2678 25.93 700 1.1795 0.5041 0.2276
0.2088 29.63 800 1.2101 0.4939 0.2238

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0
Downloads last month
30
Safetensors
Model size
94.4M params
Tensor type
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kingabzpro/wav2vec2-large-xlsr-53-punjabi

Finetuned
(2)
this model

Dataset used to train kingabzpro/wav2vec2-large-xlsr-53-punjabi

Spaces using kingabzpro/wav2vec2-large-xlsr-53-punjabi 32

Collection including kingabzpro/wav2vec2-large-xlsr-53-punjabi

Evaluation results