|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, List, Optional
|
|
from transformers.tokenization_utils import AddedToken
|
|
from transformers import XLNetTokenizer
|
|
from transformers import SPIECE_UNDERLINE
|
|
|
|
|
|
class KoBERTTokenizer(XLNetTokenizer):
|
|
padding_side = "right"
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_file,
|
|
do_lower_case=False,
|
|
remove_space=True,
|
|
keep_accents=False,
|
|
bos_token="[CLS]",
|
|
eos_token="[SEP]",
|
|
unk_token="[UNK]",
|
|
sep_token="[SEP]",
|
|
pad_token="[PAD]",
|
|
cls_token="[CLS]",
|
|
mask_token="[MASK]",
|
|
additional_special_tokens=None,
|
|
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
|
**kwargs
|
|
) -> None:
|
|
|
|
mask_token = (
|
|
AddedToken(mask_token, lstrip=True, rstrip=False)
|
|
if isinstance(mask_token, str)
|
|
else mask_token
|
|
)
|
|
|
|
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
|
|
|
super().__init__(
|
|
vocab_file,
|
|
do_lower_case=do_lower_case,
|
|
remove_space=remove_space,
|
|
keep_accents=keep_accents,
|
|
bos_token=bos_token,
|
|
eos_token=eos_token,
|
|
unk_token=unk_token,
|
|
sep_token=sep_token,
|
|
pad_token=pad_token,
|
|
cls_token=cls_token,
|
|
mask_token=mask_token,
|
|
additional_special_tokens=additional_special_tokens,
|
|
sp_model_kwargs=self.sp_model_kwargs,
|
|
**kwargs,
|
|
)
|
|
self._pad_token_type_id = 0
|
|
|
|
def build_inputs_with_special_tokens(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|
) -> List[int]:
|
|
"""
|
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
|
adding special tokens. An XLNet sequence has the following format:
|
|
- single sequence: ``<cls> X <sep>``
|
|
- pair of sequences: ``<cls> A <sep> B <sep>``
|
|
Args:
|
|
token_ids_0 (:obj:`List[int]`):
|
|
List of IDs to which the special tokens will be added.
|
|
token_ids_1 (:obj:`List[int]`, `optional`):
|
|
Optional second list of IDs for sequence pairs.
|
|
Returns:
|
|
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
|
|
"""
|
|
sep = [self.sep_token_id]
|
|
cls = [self.cls_token_id]
|
|
if token_ids_1 is None:
|
|
return cls + token_ids_0 + sep
|
|
return cls + token_ids_0 + sep + token_ids_1 + sep
|
|
|
|
def _tokenize(self, text: str) -> List[str]:
|
|
"""Tokenize a string."""
|
|
text = self.preprocess_text(text)
|
|
pieces = self.sp_model.encode(text, out_type=str, **self.sp_model_kwargs)
|
|
new_pieces = []
|
|
for piece in pieces:
|
|
if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit():
|
|
cur_pieces = self.sp_model.EncodeAsPieces(
|
|
piece[:-1].replace(SPIECE_UNDERLINE, "")
|
|
)
|
|
if (
|
|
piece[0] != SPIECE_UNDERLINE
|
|
and cur_pieces[0][0] == SPIECE_UNDERLINE
|
|
):
|
|
if len(cur_pieces[0]) == 1:
|
|
cur_pieces = cur_pieces[1:]
|
|
else:
|
|
cur_pieces[0] = cur_pieces[0][1:]
|
|
cur_pieces.append(piece[-1])
|
|
new_pieces.extend(cur_pieces)
|
|
else:
|
|
new_pieces.append(piece)
|
|
|
|
return new_pieces
|
|
|
|
def build_inputs_with_special_tokens(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|
) -> List[int]:
|
|
"""
|
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
|
adding special tokens. An XLNet sequence has the following format:
|
|
|
|
- single sequence: ``<cls> X <sep> ``
|
|
- pair of sequences: ``<cls> A <sep> B <sep>``
|
|
|
|
Args:
|
|
token_ids_0 (:obj:`List[int]`):
|
|
List of IDs to which the special tokens will be added.
|
|
token_ids_1 (:obj:`List[int]`, `optional`):
|
|
Optional second list of IDs for sequence pairs.
|
|
|
|
Returns:
|
|
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
|
|
"""
|
|
sep = [self.sep_token_id]
|
|
cls = [self.cls_token_id]
|
|
if token_ids_1 is None:
|
|
return cls + token_ids_0 + sep
|
|
return cls + token_ids_0 + sep + token_ids_1 + sep
|
|
|
|
def create_token_type_ids_from_sequences(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|
) -> List[int]:
|
|
"""
|
|
Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLNet
|
|
sequence pair mask has the following format:
|
|
|
|
::
|
|
|
|
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
|
| first sequence | second sequence |
|
|
|
|
If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s).
|
|
|
|
Args:
|
|
token_ids_0 (:obj:`List[int]`):
|
|
List of IDs.
|
|
token_ids_1 (:obj:`List[int]`, `optional`):
|
|
Optional second list of IDs for sequence pairs.
|
|
|
|
Returns:
|
|
:obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given
|
|
sequence(s).
|
|
"""
|
|
sep = [self.sep_token_id]
|
|
cls = [self.cls_token_id]
|
|
if token_ids_1 is None:
|
|
return len(cls + token_ids_0 + sep) * [0]
|
|
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] |