File size: 6,630 Bytes
e688cc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# coding=utf-8
# Copyright 2021 SKT AI Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Dict, List, Optional
from transformers.tokenization_utils import AddedToken
from transformers import XLNetTokenizer
from transformers import SPIECE_UNDERLINE


class KoBERTTokenizer(XLNetTokenizer):
    padding_side = "right"

    def __init__(

        self,

        vocab_file,

        do_lower_case=False,

        remove_space=True,

        keep_accents=False,

        bos_token="[CLS]",

        eos_token="[SEP]",

        unk_token="[UNK]",

        sep_token="[SEP]",

        pad_token="[PAD]",

        cls_token="[CLS]",

        mask_token="[MASK]",

        additional_special_tokens=None,

        sp_model_kwargs: Optional[Dict[str, Any]] = None,

        **kwargs

    ) -> None:
        # Mask token behave like a normal word, i.e. include the space before it
        mask_token = (
            AddedToken(mask_token, lstrip=True, rstrip=False)
            if isinstance(mask_token, str)
            else mask_token
        )

        self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs

        super().__init__(
            vocab_file,
            do_lower_case=do_lower_case,
            remove_space=remove_space,
            keep_accents=keep_accents,
            bos_token=bos_token,
            eos_token=eos_token,
            unk_token=unk_token,
            sep_token=sep_token,
            pad_token=pad_token,
            cls_token=cls_token,
            mask_token=mask_token,
            additional_special_tokens=additional_special_tokens,
            sp_model_kwargs=self.sp_model_kwargs,
            **kwargs,
        )
        self._pad_token_type_id = 0

    def build_inputs_with_special_tokens(

        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None

    ) -> List[int]:
        """

        Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and

        adding special tokens. An XLNet sequence has the following format:

        - single sequence: ``<cls> X <sep>``

        - pair of sequences: ``<cls> A <sep> B <sep>``

        Args:

            token_ids_0 (:obj:`List[int]`):

                List of IDs to which the special tokens will be added.

            token_ids_1 (:obj:`List[int]`, `optional`):

                Optional second list of IDs for sequence pairs.

        Returns:

            :obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.

        """
        sep = [self.sep_token_id]
        cls = [self.cls_token_id]
        if token_ids_1 is None:
            return cls + token_ids_0 + sep
        return cls + token_ids_0 + sep + token_ids_1 + sep

    def _tokenize(self, text: str) -> List[str]:
        """Tokenize a string."""
        text = self.preprocess_text(text)
        pieces = self.sp_model.encode(text, out_type=str, **self.sp_model_kwargs)
        new_pieces = []
        for piece in pieces:
            if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit():
                cur_pieces = self.sp_model.EncodeAsPieces(
                    piece[:-1].replace(SPIECE_UNDERLINE, "")
                )
                if (
                    piece[0] != SPIECE_UNDERLINE
                    and cur_pieces[0][0] == SPIECE_UNDERLINE
                ):
                    if len(cur_pieces[0]) == 1:
                        cur_pieces = cur_pieces[1:]
                    else:
                        cur_pieces[0] = cur_pieces[0][1:]
                cur_pieces.append(piece[-1])
                new_pieces.extend(cur_pieces)
            else:
                new_pieces.append(piece)

        return new_pieces

    def build_inputs_with_special_tokens(

        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None

    ) -> List[int]:
        """

        Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and

        adding special tokens. An XLNet sequence has the following format:



        - single sequence: ``<cls> X <sep> ``

        - pair of sequences: ``<cls> A <sep> B <sep>``



        Args:

            token_ids_0 (:obj:`List[int]`):

                List of IDs to which the special tokens will be added.

            token_ids_1 (:obj:`List[int]`, `optional`):

                Optional second list of IDs for sequence pairs.



        Returns:

            :obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.

        """
        sep = [self.sep_token_id]
        cls = [self.cls_token_id]
        if token_ids_1 is None:
            return cls + token_ids_0 + sep
        return cls + token_ids_0 + sep + token_ids_1 + sep

    def create_token_type_ids_from_sequences(

        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None

    ) -> List[int]:
        """

        Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLNet

        sequence pair mask has the following format:



        ::



            0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

            | first sequence    | second sequence |



        If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s).



        Args:

            token_ids_0 (:obj:`List[int]`):

                List of IDs.

            token_ids_1 (:obj:`List[int]`, `optional`):

                Optional second list of IDs for sequence pairs.



        Returns:

            :obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given

            sequence(s).

        """
        sep = [self.sep_token_id]
        cls = [self.cls_token_id]
        if token_ids_1 is None:
            return len(cls + token_ids_0 + sep) * [0]
        return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]