ec_classfication_0502_bert_base_uncased

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0262
  • F1: 0.8132

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 59 0.5865 0.7238
No log 2.0 118 0.4017 0.8302
No log 3.0 177 0.4968 0.8182
No log 4.0 236 0.7651 0.7595
No log 5.0 295 0.6250 0.8276
No log 6.0 354 0.8580 0.7907
No log 7.0 413 0.8241 0.8182
No log 8.0 472 0.8875 0.8261
0.193 9.0 531 0.9314 0.8182
0.193 10.0 590 0.9188 0.8352
0.193 11.0 649 0.9721 0.8409
0.193 12.0 708 0.9929 0.8409
0.193 13.0 767 1.0092 0.8222
0.193 14.0 826 1.0261 0.8132
0.193 15.0 885 1.0262 0.8132

Framework versions

  • Transformers 4.27.3
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.2
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.