khushwant04's picture
Update README.md
e4f58f1 verified
|
raw
history blame
1.58 kB
---
language: en
tags:
- llama
- Peft
- fine-tuning
- text-generation
- causal-lm
- NLP
license: mit
datasets:
- mlabonne/FineTome-100k
---
# Llama-3.2-3b-FineTome-100k
## Model Description
**Llama-3.2-3b-FineTome-100k** is a fine-tuned version of the Llama 3.2 model, optimized for various natural language processing (NLP) tasks. It has been trained on a dataset containing 100,000 examples, designed to improve its performance on domain-specific applications.
### Key Features
- **Model Size**: 3 billion parameters
- **Architecture**: Transformer-based architecture optimized for NLP tasks
- **Fine-tuning Dataset**: 100k curated examples from diverse sources
## Use Cases
- Text generation
- Sentiment analysis
- Question answering
- Language translation
- Dialogue systems
## Installation
To use the **Llama-3.2-3b-FineTome-100k** model, ensure you have the `transformers` library installed. You can install it using pip:
```bash
pip install transformers
```
```bash
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("khushwant04/Llama-3.2-3b-FineTome-100k")
model = AutoModelForCausalLM.from_pretrained("khushwant04/Llama-3.2-3b-FineTome-100k")
# Encode input text
input_text = "What are the benefits of using Llama-3.2-3b-FineTome-100k?"
input_ids = tokenizer.encode(input_text, return_tensors='pt')
# Generate output
output = model.generate(input_ids, max_length=50)
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(output_text)
```