File size: 1,578 Bytes
37e39e6
 
 
 
df226c4
37e39e6
 
 
 
 
 
2e4323a
37e39e6
 
19d4973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62d4a3e
19d4973
62d4a3e
19d4973
 
 
e4f58f1
 
19d4973
 
0139cb6
19d4973
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
language: en
tags:
  - llama
  - Peft
  - fine-tuning
  - text-generation
  - causal-lm
  - NLP
license: mit
datasets:
  - mlabonne/FineTome-100k
---

# Llama-3.2-3b-FineTome-100k


## Model Description

**Llama-3.2-3b-FineTome-100k** is a fine-tuned version of the Llama 3.2 model, optimized for various natural language processing (NLP) tasks. It has been trained on a dataset containing 100,000 examples, designed to improve its performance on domain-specific applications.

### Key Features

- **Model Size**: 3 billion parameters
- **Architecture**: Transformer-based architecture optimized for NLP tasks
- **Fine-tuning Dataset**: 100k curated examples from diverse sources

## Use Cases

- Text generation
- Sentiment analysis
- Question answering
- Language translation
- Dialogue systems

## Installation

To use the **Llama-3.2-3b-FineTome-100k** model, ensure you have the `transformers` library installed. You can install it using pip:

```bash
pip install transformers
```

```bash
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("khushwant04/Llama-3.2-3b-FineTome-100k")
model = AutoModelForCausalLM.from_pretrained("khushwant04/Llama-3.2-3b-FineTome-100k")

# Encode input text
input_text = "Tell me someting intresting about India and its culture?"
input_ids = tokenizer.encode(input_text, return_tensors='pt')

# Generate output
output = model.generate(input_ids, max_length=50)
output_text = tokenizer.decode(output[0], skip_special_tokens=True)

print(output_text)
```