khushwant04
commited on
Commit
•
19d4973
1
Parent(s):
39cca76
Update README.md
Browse files
README.md
CHANGED
@@ -1,22 +1,45 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
-
|
18 |
-
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Llama-3.2-3b-FineTome-100k
|
2 |
+
|
3 |
+
![Model Logo](link_to_logo_image) <!-- Optional: Replace with a logo if available -->
|
4 |
+
|
5 |
+
## Model Description
|
6 |
+
|
7 |
+
**Llama-3.2-3b-FineTome-100k** is a fine-tuned version of the Llama 3.2 model, optimized for various natural language processing (NLP) tasks. It has been trained on a dataset containing 100,000 examples, designed to improve its performance on domain-specific applications.
|
8 |
+
|
9 |
+
### Key Features
|
10 |
+
|
11 |
+
- **Model Size**: 3 billion parameters
|
12 |
+
- **Architecture**: Transformer-based architecture optimized for NLP tasks
|
13 |
+
- **Fine-tuning Dataset**: 100k curated examples from diverse sources
|
14 |
+
|
15 |
+
## Use Cases
|
16 |
+
|
17 |
+
- Text generation
|
18 |
+
- Sentiment analysis
|
19 |
+
- Question answering
|
20 |
+
- Language translation
|
21 |
+
- Dialogue systems
|
22 |
+
|
23 |
+
## Installation
|
24 |
+
|
25 |
+
To use the **Llama-3.2-3b-FineTome-100k** model, ensure you have the `transformers` library installed. You can install it using pip:
|
26 |
+
|
27 |
+
```bash
|
28 |
+
pip install transformers
|
29 |
+
|
30 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
31 |
+
|
32 |
+
# Load the tokenizer and model
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained("huggingface/llama-3.2-3b-finetome-100k")
|
34 |
+
model = AutoModelForCausalLM.from_pretrained("huggingface/llama-3.2-3b-finetome-100k")
|
35 |
+
|
36 |
+
# Encode input text
|
37 |
+
input_text = "What are the benefits of using Llama-3.2-3b-FineTome-100k?"
|
38 |
+
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
39 |
+
|
40 |
+
# Generate output
|
41 |
+
output = model.generate(input_ids, max_length=50)
|
42 |
+
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
43 |
+
|
44 |
+
print(output_text)
|
45 |
+
```
|