|
""" |
|
Instruction-tuning with LoRA on the Alpaca dataset. |
|
|
|
Note: If you run into a CUDA error "Expected is_sm80 to be true, but got false", uncomment the line |
|
`torch.backends.cuda.enable_flash_sdp(False)` in the script below (see https://github.com/Lightning-AI/lit-llama/issues/101). |
|
""" |
|
import os |
|
import time |
|
|
|
import lightning as L |
|
import numpy as np |
|
import torch |
|
|
|
from generate import generate |
|
from lit_llama.lora import mark_only_lora_as_trainable, lora, lora_state_dict |
|
from lit_llama.model import LLaMA, LLaMAConfig |
|
from lit_llama.tokenizer import Tokenizer |
|
from scripts.prepare_alpaca import generate_prompt |
|
|
|
|
|
eval_interval = 100 |
|
save_interval = 100 |
|
eval_iters = 100 |
|
log_interval = 1 |
|
|
|
|
|
learning_rate = 3e-4 |
|
batch_size = 128 |
|
micro_batch_size = 4 |
|
gradient_accumulation_steps = batch_size // micro_batch_size |
|
max_iters = 10000 |
|
weight_decay = 0.0 |
|
max_seq_length = 256 |
|
lora_r = 8 |
|
lora_alpha = 16 |
|
lora_dropout = 0.05 |
|
warmup_steps = 100 |
|
|
|
|
|
def main( |
|
data_dir: str = "data/alpaca", |
|
pretrained_path: str = "checkpoints/lit-llama/7B/lit-llama.pth", |
|
out_dir: str = "out/lora/alpaca", |
|
): |
|
|
|
|
|
fabric = L.Fabric(accelerator="cpu", devices=1, precision="bf16-true") |
|
fabric.launch() |
|
fabric.seed_everything(1337 + fabric.global_rank) |
|
|
|
if fabric.global_rank == 0: |
|
os.makedirs(out_dir, exist_ok=True) |
|
print("loading dataset ", data_dir) |
|
train_data, val_data = load_datasets(data_dir=data_dir) |
|
print("train data: ", len(train_data)) |
|
print("val data: ", len(val_data)) |
|
config = LLaMAConfig.from_name("7B") |
|
config.block_size = max_seq_length |
|
print("loading pretrained model ", pretrained_path) |
|
checkpoint = torch.load(pretrained_path) |
|
|
|
with fabric.init_module(), lora(r=lora_r, alpha=lora_alpha, dropout=lora_dropout, enabled=True): |
|
model = LLaMA(config) |
|
|
|
model.load_state_dict(checkpoint, strict=False) |
|
|
|
mark_only_lora_as_trainable(model) |
|
|
|
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate) |
|
model, optimizer = fabric.setup(model, optimizer) |
|
print("start training") |
|
train(fabric, model, optimizer, train_data, val_data, out_dir) |
|
|
|
|
|
print(f"Saving LoRA weights to {out_dir}") |
|
checkpoint = lora_state_dict(model) |
|
fabric.save(os.path.join(out_dir, "lit-llama-lora-finetuned.pth"), checkpoint) |
|
|
|
|
|
def train( |
|
fabric: L.Fabric, |
|
model: torch.nn.Module, |
|
optimizer: torch.optim.Optimizer, |
|
train_data: np.ndarray, |
|
val_data: np.ndarray, |
|
out_dir: str, |
|
) -> None: |
|
"""The training loop. |
|
|
|
Loosely based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT. |
|
""" |
|
step_count = 0 |
|
print("max iters:", max_iters ) |
|
|
|
for iter_num in range(max_iters): |
|
print("iter_num", iter_num) |
|
if step_count <= warmup_steps: |
|
|
|
lr = learning_rate * step_count / warmup_steps |
|
for param_group in optimizer.param_groups: |
|
param_group['lr'] = lr |
|
|
|
t0 = time.time() |
|
|
|
input_ids, targets = get_batch(fabric, train_data) |
|
logits = model(input_ids) |
|
print("calculate loss") |
|
loss = loss_fn(logits, targets) |
|
print("backward") |
|
fabric.backward(loss) |
|
|
|
if (iter_num + 1) % gradient_accumulation_steps == 0: |
|
print("step optimizer") |
|
optimizer.step() |
|
optimizer.zero_grad() |
|
step_count += 1 |
|
if step_count % eval_interval == 0: |
|
val_loss = validate(fabric, model, val_data) |
|
fabric.print(f"step {iter_num}: val loss {val_loss:.4f}") |
|
fabric.barrier() |
|
|
|
if step_count % save_interval == 0: |
|
print(f"Saving LoRA weights to {out_dir}") |
|
|
|
|
|
checkpoint = lora_state_dict(model) |
|
fabric.save(os.path.join(out_dir, f"iter-{iter_num:06d}-ckpt.pth"), checkpoint) |
|
|
|
dt = time.time() - t0 |
|
if iter_num % log_interval == 0: |
|
fabric.print(f"iter {iter_num}: loss {loss.item():.4f}, time: {dt*1000:.2f}ms") |
|
|
|
|
|
def generate_response(model, instruction): |
|
tokenizer = Tokenizer("checkpoints/lit-llama/tokenizer.model") |
|
sample = {"instruction": instruction, "input": ""} |
|
prompt = generate_prompt(sample) |
|
encoded = tokenizer.encode(prompt, bos=True, eos=False, device=model.device) |
|
|
|
output = generate( |
|
model, |
|
idx=encoded, |
|
max_seq_length=max_seq_length, |
|
max_new_tokens=100, |
|
) |
|
output = tokenizer.decode(output) |
|
return output |
|
|
|
|
|
@torch.no_grad() |
|
def validate(fabric: L.Fabric, model: torch.nn.Module, val_data: np.ndarray) -> torch.Tensor: |
|
fabric.print("Validating ...") |
|
model.eval() |
|
losses = torch.zeros(eval_iters) |
|
for k in range(eval_iters): |
|
input_ids, targets = get_batch(fabric, val_data) |
|
logits = model(input_ids) |
|
loss = loss_fn(logits, targets) |
|
losses[k] = loss.item() |
|
out = losses.mean() |
|
|
|
|
|
instruction = "Recommend a movie for me to watch during the weekend and explain the reason." |
|
output = generate_response(model, instruction) |
|
fabric.print(instruction) |
|
fabric.print(output) |
|
|
|
model.train() |
|
return out.item() |
|
|
|
def loss_fn(logits, targets): |
|
|
|
logits = logits[..., :-1, :].contiguous() |
|
targets = targets[..., 1:].contiguous() |
|
loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) |
|
return loss |
|
|
|
|
|
def get_batch(fabric: L.Fabric, data: list): |
|
ix = torch.randint(len(data), (micro_batch_size,)) |
|
|
|
input_ids = [data[i]["input_ids"].type(torch.int64) for i in ix] |
|
labels = [data[i]["labels"].type(torch.int64) for i in ix] |
|
|
|
max_len = max(len(s) for s in input_ids) |
|
|
|
def pad_right(x, pad_id): |
|
|
|
n = max_len - len(x) |
|
return torch.cat((x, torch.full((n,), pad_id, dtype=x.dtype))) |
|
|
|
x = torch.stack([pad_right(x, pad_id=0) for x in input_ids]) |
|
y = torch.stack([pad_right(x, pad_id=-1) for x in labels]) |
|
x, y = fabric.to_device((x.pin_memory(), y.pin_memory())) |
|
return x, y |
|
|
|
|
|
def load_datasets(data_dir): |
|
train_data = torch.load(os.path.join(data_dir, "train.pt")) |
|
val_data = torch.load(os.path.join(data_dir, "test.pt")) |
|
return train_data, val_data |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
torch.set_float32_matmul_precision("high") |
|
|
|
from jsonargparse.cli import CLI |
|
|
|
CLI(main) |
|
|