Upload 13 files
Browse files- finetune_lora.py +2 -2
- finetune_lora_origin.py +212 -0
- scripts/__pycache__/prepare_alpaca.cpython-311.pyc +0 -0
- scripts/prepare_alpaca.py +2 -2
- scripts/prepare_alpaca_origin.py +130 -0
finetune_lora.py
CHANGED
@@ -28,7 +28,7 @@ learning_rate = 3e-4
|
|
28 |
batch_size = 128
|
29 |
micro_batch_size = 4
|
30 |
gradient_accumulation_steps = batch_size // micro_batch_size
|
31 |
-
max_iters =
|
32 |
weight_decay = 0.0
|
33 |
max_seq_length = 256 # see scripts/prepare_alpaca.py
|
34 |
lora_r = 8
|
@@ -44,7 +44,7 @@ def main(
|
|
44 |
):
|
45 |
|
46 |
#fabric = L.Fabric(accelerator="cuda", precision="bf16-true")
|
47 |
-
fabric = L.Fabric(accelerator="cpu", devices=
|
48 |
fabric.launch()
|
49 |
fabric.seed_everything(1337 + fabric.global_rank)
|
50 |
|
|
|
28 |
batch_size = 128
|
29 |
micro_batch_size = 4
|
30 |
gradient_accumulation_steps = batch_size // micro_batch_size
|
31 |
+
max_iters = 10000 #50000 * 3 // micro_batch_size
|
32 |
weight_decay = 0.0
|
33 |
max_seq_length = 256 # see scripts/prepare_alpaca.py
|
34 |
lora_r = 8
|
|
|
44 |
):
|
45 |
|
46 |
#fabric = L.Fabric(accelerator="cuda", precision="bf16-true")
|
47 |
+
fabric = L.Fabric(accelerator="cpu", devices=1, precision="bf16-true")
|
48 |
fabric.launch()
|
49 |
fabric.seed_everything(1337 + fabric.global_rank)
|
50 |
|
finetune_lora_origin.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Instruction-tuning with LoRA on the Alpaca dataset.
|
3 |
+
|
4 |
+
Note: If you run into a CUDA error "Expected is_sm80 to be true, but got false", uncomment the line
|
5 |
+
`torch.backends.cuda.enable_flash_sdp(False)` in the script below (see https://github.com/Lightning-AI/lit-llama/issues/101).
|
6 |
+
"""
|
7 |
+
import sys
|
8 |
+
from pathlib import Path
|
9 |
+
import os
|
10 |
+
import time
|
11 |
+
|
12 |
+
import lightning as L
|
13 |
+
import numpy as np
|
14 |
+
import torch
|
15 |
+
|
16 |
+
# support running without installing as a package
|
17 |
+
wd = Path(__file__).parent.parent.resolve()
|
18 |
+
sys.path.append(str(wd))
|
19 |
+
|
20 |
+
from generate import generate
|
21 |
+
from lit_llama.lora import mark_only_lora_as_trainable, lora, lora_state_dict
|
22 |
+
from lit_llama.model import LLaMA, LLaMAConfig
|
23 |
+
from lit_llama.tokenizer import Tokenizer
|
24 |
+
from scripts.prepare_alpaca import generate_prompt
|
25 |
+
|
26 |
+
|
27 |
+
eval_interval = 100
|
28 |
+
save_interval = 100
|
29 |
+
eval_iters = 100
|
30 |
+
log_interval = 1
|
31 |
+
|
32 |
+
# Hyperparameters
|
33 |
+
learning_rate = 3e-4
|
34 |
+
batch_size = 128
|
35 |
+
micro_batch_size = 4
|
36 |
+
gradient_accumulation_steps = batch_size // micro_batch_size
|
37 |
+
max_iters = 50000 * 3 // micro_batch_size
|
38 |
+
weight_decay = 0.0
|
39 |
+
max_seq_length = 256 # see scripts/prepare_alpaca.py
|
40 |
+
lora_r = 8
|
41 |
+
lora_alpha = 16
|
42 |
+
lora_dropout = 0.05
|
43 |
+
warmup_steps = 100
|
44 |
+
|
45 |
+
|
46 |
+
def main(
|
47 |
+
data_dir: str = "data/alpaca",
|
48 |
+
pretrained_path: str = "checkpoints/lit-llama/7B/lit-llama.pth",
|
49 |
+
out_dir: str = "out/lora/alpaca",
|
50 |
+
):
|
51 |
+
|
52 |
+
fabric = L.Fabric(accelerator="cpu", devices=1, precision="bf16-true")
|
53 |
+
# fabric = L.Fabric(accelerator="cuda", devices=1, precision="bf16-true")
|
54 |
+
fabric.launch()
|
55 |
+
fabric.seed_everything(1337 + fabric.global_rank)
|
56 |
+
|
57 |
+
if fabric.global_rank == 0:
|
58 |
+
os.makedirs(out_dir, exist_ok=True)
|
59 |
+
|
60 |
+
train_data, val_data = load_datasets(data_dir=data_dir)
|
61 |
+
|
62 |
+
config = LLaMAConfig.from_name("7B")
|
63 |
+
config.block_size = max_seq_length
|
64 |
+
|
65 |
+
checkpoint = torch.load(pretrained_path)
|
66 |
+
|
67 |
+
with fabric.init_module(), lora(r=lora_r, alpha=lora_alpha, dropout=lora_dropout, enabled=True):
|
68 |
+
model = LLaMA(config)
|
69 |
+
# strict=False because missing keys due to LoRA weights not contained in checkpoint state
|
70 |
+
model.load_state_dict(checkpoint, strict=False)
|
71 |
+
|
72 |
+
mark_only_lora_as_trainable(model)
|
73 |
+
|
74 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
|
75 |
+
model, optimizer = fabric.setup(model, optimizer)
|
76 |
+
train(fabric, model, optimizer, train_data, val_data, out_dir)
|
77 |
+
|
78 |
+
# Save the final LoRA checkpoint at the end of training
|
79 |
+
checkpoint = lora_state_dict(model)
|
80 |
+
fabric.save(os.path.join(out_dir, "lit-llama-lora-finetuned.pth"), checkpoint)
|
81 |
+
|
82 |
+
|
83 |
+
def train(
|
84 |
+
fabric: L.Fabric,
|
85 |
+
model: torch.nn.Module,
|
86 |
+
optimizer: torch.optim.Optimizer,
|
87 |
+
train_data: np.ndarray,
|
88 |
+
val_data: np.ndarray,
|
89 |
+
out_dir: str,
|
90 |
+
) -> None:
|
91 |
+
"""The training loop.
|
92 |
+
|
93 |
+
Loosely based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT.
|
94 |
+
"""
|
95 |
+
step_count = 0
|
96 |
+
|
97 |
+
for iter_num in range(max_iters):
|
98 |
+
|
99 |
+
if step_count <= warmup_steps:
|
100 |
+
# linear warmup
|
101 |
+
lr = learning_rate * step_count / warmup_steps
|
102 |
+
for param_group in optimizer.param_groups:
|
103 |
+
param_group['lr'] = lr
|
104 |
+
|
105 |
+
t0 = time.time()
|
106 |
+
|
107 |
+
input_ids, targets = get_batch(fabric, train_data)
|
108 |
+
logits = model(input_ids)
|
109 |
+
loss = loss_fn(logits, targets)
|
110 |
+
fabric.backward(loss)
|
111 |
+
|
112 |
+
if (iter_num + 1) % gradient_accumulation_steps == 0:
|
113 |
+
optimizer.step()
|
114 |
+
optimizer.zero_grad()
|
115 |
+
step_count += 1
|
116 |
+
|
117 |
+
if step_count % eval_interval == 0:
|
118 |
+
val_loss = validate(fabric, model, val_data)
|
119 |
+
fabric.print(f"step {iter_num}: val loss {val_loss:.4f}")
|
120 |
+
fabric.barrier()
|
121 |
+
|
122 |
+
if step_count % save_interval == 0:
|
123 |
+
print(f"Saving LoRA weights to {out_dir}")
|
124 |
+
# We are only saving the LoRA weights
|
125 |
+
# TODO: Provide a function/script to merge the LoRA weights with pretrained weights
|
126 |
+
checkpoint = lora_state_dict(model)
|
127 |
+
fabric.save(os.path.join(out_dir, f"iter-{iter_num:06d}-ckpt.pth"), checkpoint)
|
128 |
+
|
129 |
+
dt = time.time() - t0
|
130 |
+
if iter_num % log_interval == 0:
|
131 |
+
fabric.print(f"iter {iter_num}: loss {loss.item():.4f}, time: {dt*1000:.2f}ms")
|
132 |
+
|
133 |
+
|
134 |
+
def generate_response(model, instruction):
|
135 |
+
tokenizer = Tokenizer("checkpoints/lit-llama/tokenizer.model")
|
136 |
+
sample = {"instruction": instruction, "input": ""}
|
137 |
+
prompt = generate_prompt(sample)
|
138 |
+
encoded = tokenizer.encode(prompt, bos=True, eos=False, device=model.device)
|
139 |
+
|
140 |
+
output = generate(
|
141 |
+
model,
|
142 |
+
idx=encoded,
|
143 |
+
max_seq_length=max_seq_length,
|
144 |
+
max_new_tokens=100,
|
145 |
+
)
|
146 |
+
output = tokenizer.decode(output)
|
147 |
+
return output # output.split("### Response:")[1].strip()
|
148 |
+
|
149 |
+
|
150 |
+
@torch.no_grad()
|
151 |
+
def validate(fabric: L.Fabric, model: torch.nn.Module, val_data: np.ndarray) -> torch.Tensor:
|
152 |
+
fabric.print("Validating ...")
|
153 |
+
model.eval()
|
154 |
+
losses = torch.zeros(eval_iters)
|
155 |
+
for k in range(eval_iters):
|
156 |
+
input_ids, targets = get_batch(fabric, val_data)
|
157 |
+
logits = model(input_ids)
|
158 |
+
loss = loss_fn(logits, targets)
|
159 |
+
losses[k] = loss.item()
|
160 |
+
out = losses.mean()
|
161 |
+
|
162 |
+
# produce an example:
|
163 |
+
instruction = "Recommend a movie for me to watch during the weekend and explain the reason."
|
164 |
+
|
165 |
+
output = generate_response(model, instruction)
|
166 |
+
fabric.print(instruction)
|
167 |
+
fabric.print(output)
|
168 |
+
|
169 |
+
model.train()
|
170 |
+
return out.item()
|
171 |
+
|
172 |
+
def loss_fn(logits, targets):
|
173 |
+
# shift the targets such that output n predicts token n+1
|
174 |
+
logits = logits[..., :-1, :].contiguous()
|
175 |
+
targets = targets[..., 1:].contiguous()
|
176 |
+
loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
|
177 |
+
return loss
|
178 |
+
|
179 |
+
|
180 |
+
def get_batch(fabric: L.Fabric, data: list):
|
181 |
+
ix = torch.randint(len(data), (micro_batch_size,))
|
182 |
+
|
183 |
+
input_ids = [data[i]["input_ids"].type(torch.int64) for i in ix]
|
184 |
+
labels = [data[i]["labels"].type(torch.int64) for i in ix]
|
185 |
+
|
186 |
+
max_len = max(len(s) for s in input_ids)
|
187 |
+
|
188 |
+
def pad_right(x, pad_id):
|
189 |
+
# pad right based on the longest sequence
|
190 |
+
n = max_len - len(x)
|
191 |
+
return torch.cat((x, torch.full((n,), pad_id, dtype=x.dtype)))
|
192 |
+
|
193 |
+
x = torch.stack([pad_right(x, pad_id=0) for x in input_ids])
|
194 |
+
y = torch.stack([pad_right(x, pad_id=-1) for x in labels])
|
195 |
+
x, y = fabric.to_device((x.pin_memory(), y.pin_memory()))
|
196 |
+
return x, y
|
197 |
+
|
198 |
+
|
199 |
+
def load_datasets(data_dir):
|
200 |
+
train_data = torch.load(os.path.join(data_dir, "train.pt"))
|
201 |
+
val_data = torch.load(os.path.join(data_dir, "test.pt"))
|
202 |
+
return train_data, val_data
|
203 |
+
|
204 |
+
|
205 |
+
if __name__ == "__main__":
|
206 |
+
# Uncomment this line if you see an error: "Expected is_sm80 to be true, but got false"
|
207 |
+
# torch.backends.cuda.enable_flash_sdp(False)
|
208 |
+
torch.set_float32_matmul_precision("high")
|
209 |
+
|
210 |
+
from jsonargparse.cli import CLI
|
211 |
+
|
212 |
+
CLI(main)
|
scripts/__pycache__/prepare_alpaca.cpython-311.pyc
CHANGED
Binary files a/scripts/__pycache__/prepare_alpaca.cpython-311.pyc and b/scripts/__pycache__/prepare_alpaca.cpython-311.pyc differ
|
|
scripts/prepare_alpaca.py
CHANGED
@@ -22,8 +22,8 @@ IGNORE_INDEX = -1
|
|
22 |
def prepare(
|
23 |
destination_path: Path = Path("data/alpaca"),
|
24 |
tokenizer_path: Path = Path("checkpoints/lit-llama/tokenizer.model"),
|
25 |
-
|
26 |
-
test_split_size: int = 2,
|
27 |
max_seq_length: int = 256,
|
28 |
seed: int = 42,
|
29 |
mask_inputs: bool = False, # as in alpaca-lora
|
|
|
22 |
def prepare(
|
23 |
destination_path: Path = Path("data/alpaca"),
|
24 |
tokenizer_path: Path = Path("checkpoints/lit-llama/tokenizer.model"),
|
25 |
+
test_split_size: int = 200,
|
26 |
+
#test_split_size: int = 2,
|
27 |
max_seq_length: int = 256,
|
28 |
seed: int = 42,
|
29 |
mask_inputs: bool = False, # as in alpaca-lora
|
scripts/prepare_alpaca_origin.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Implementation derived from https://github.com/tloen/alpaca-lora"""
|
2 |
+
import sys
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
# support running without installing as a package
|
6 |
+
wd = Path(__file__).parent.parent.resolve()
|
7 |
+
sys.path.append(str(wd))
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import requests
|
11 |
+
import json
|
12 |
+
from torch.utils.data import random_split
|
13 |
+
from lit_llama.tokenizer import Tokenizer
|
14 |
+
from tqdm import tqdm
|
15 |
+
|
16 |
+
|
17 |
+
DATA_FILE = "https://raw.githubusercontent.com/tloen/alpaca-lora/main/alpaca_data_cleaned_archive.json"
|
18 |
+
DATA_FILE_NAME = "alpaca_data_cleaned_archive.json"
|
19 |
+
IGNORE_INDEX = -1
|
20 |
+
|
21 |
+
|
22 |
+
def prepare(
|
23 |
+
destination_path: Path = Path("data/alpaca"),
|
24 |
+
tokenizer_path: Path = Path("checkpoints/lit-llama/tokenizer.model"),
|
25 |
+
test_split_size: int = 2000,
|
26 |
+
max_seq_length: int = 256,
|
27 |
+
seed: int = 42,
|
28 |
+
mask_inputs: bool = False, # as in alpaca-lora
|
29 |
+
data_file_name: str = DATA_FILE_NAME
|
30 |
+
) -> None:
|
31 |
+
"""Prepare the Alpaca dataset for instruction tuning.
|
32 |
+
|
33 |
+
The output is a training and validation dataset saved as `train.pt` and `val.pt`,
|
34 |
+
which stores the preprocessed and tokenized prompts and labels.
|
35 |
+
"""
|
36 |
+
|
37 |
+
destination_path.mkdir(parents=True, exist_ok=True)
|
38 |
+
file_path = destination_path / data_file_name
|
39 |
+
download(file_path)
|
40 |
+
|
41 |
+
# TODO: If we don't have the Meta weights, where do we get the tokenizer from?
|
42 |
+
tokenizer = Tokenizer(tokenizer_path)
|
43 |
+
|
44 |
+
with open(file_path, "r") as file:
|
45 |
+
data = json.load(file)
|
46 |
+
|
47 |
+
# Partition the dataset into train and test
|
48 |
+
train_split_size = len(data) - test_split_size
|
49 |
+
train_set, test_set = random_split(
|
50 |
+
data,
|
51 |
+
lengths=(train_split_size, test_split_size),
|
52 |
+
generator=torch.Generator().manual_seed(seed),
|
53 |
+
)
|
54 |
+
train_set, test_set = list(train_set), list(test_set)
|
55 |
+
|
56 |
+
print(f"train has {len(train_set):,} samples")
|
57 |
+
print(f"val has {len(test_set):,} samples")
|
58 |
+
|
59 |
+
print("Processing train split ...")
|
60 |
+
train_set = [prepare_sample(sample, tokenizer, max_seq_length, mask_inputs) for sample in tqdm(train_set)]
|
61 |
+
torch.save(train_set, file_path.parent / "train.pt")
|
62 |
+
|
63 |
+
print("Processing test split ...")
|
64 |
+
test_set = [prepare_sample(sample, tokenizer, max_seq_length, mask_inputs) for sample in tqdm(test_set)]
|
65 |
+
torch.save(test_set, file_path.parent / "test.pt")
|
66 |
+
|
67 |
+
|
68 |
+
def download(file_path: Path):
|
69 |
+
"""Downloads the raw json data file and saves it in the given destination."""
|
70 |
+
if file_path.exists():
|
71 |
+
return
|
72 |
+
with open(file_path, "w") as f:
|
73 |
+
f.write(requests.get(DATA_FILE).text)
|
74 |
+
|
75 |
+
|
76 |
+
def prepare_sample(example: dict, tokenizer: Tokenizer, max_length: int, mask_inputs: bool = True):
|
77 |
+
"""Processes a single sample.
|
78 |
+
|
79 |
+
Each sample in the dataset consists of:
|
80 |
+
- instruction: A string describing the task
|
81 |
+
- input: A string holding a special input value for the instruction.
|
82 |
+
This only applies to some samples, and in others this is empty.
|
83 |
+
- output: The response string
|
84 |
+
|
85 |
+
This function processes this data to produce a prompt text and a label for
|
86 |
+
supervised training. The prompt text is formed as a single message including both
|
87 |
+
the instruction and the input. The label/target is the same message but with the
|
88 |
+
response attached.
|
89 |
+
|
90 |
+
Finally, both the prompt and the label get tokenized. If desired, all tokens
|
91 |
+
in the label that correspond to the original input prompt get masked out (default).
|
92 |
+
"""
|
93 |
+
full_prompt = generate_prompt(example)
|
94 |
+
full_prompt_and_response = full_prompt + example["output"]
|
95 |
+
encoded_full_prompt = tokenize(tokenizer, full_prompt, max_length=max_length, eos=False)
|
96 |
+
encoded_full_prompt_and_response = tokenize(tokenizer, full_prompt_and_response, eos=True, max_length=max_length)
|
97 |
+
|
98 |
+
# The labels are the full prompt with response, but with the prompt masked out
|
99 |
+
labels = encoded_full_prompt_and_response.clone()
|
100 |
+
if mask_inputs:
|
101 |
+
labels[:len(encoded_full_prompt)] = IGNORE_INDEX
|
102 |
+
|
103 |
+
return {**example, "input_ids": encoded_full_prompt_and_response, "input_ids_no_response": encoded_full_prompt, "labels": labels}
|
104 |
+
|
105 |
+
|
106 |
+
def tokenize(tokenizer: Tokenizer, string: str, max_length: int, eos=True) -> torch.Tensor:
|
107 |
+
return tokenizer.encode(string, bos=True, eos=eos, max_length=max_length)
|
108 |
+
|
109 |
+
|
110 |
+
def generate_prompt(example):
|
111 |
+
"""Generates a standardized message to prompt the model with an instruction, optional input and a
|
112 |
+
'response' field."""
|
113 |
+
|
114 |
+
if example["input"]:
|
115 |
+
return (
|
116 |
+
"Below is an instruction that describes a task, paired with an input that provides further context. "
|
117 |
+
"Write a response that appropriately completes the request.\n\n"
|
118 |
+
f"### Instruction:\n{example['instruction']}\n\n### Input:\n{example['input']}\n\n### Response:"
|
119 |
+
)
|
120 |
+
return (
|
121 |
+
"Below is an instruction that describes a task. "
|
122 |
+
"Write a response that appropriately completes the request.\n\n"
|
123 |
+
f"### Instruction:\n{example['instruction']}\n\n### Response:"
|
124 |
+
)
|
125 |
+
|
126 |
+
|
127 |
+
if __name__ == "__main__":
|
128 |
+
from jsonargparse import CLI
|
129 |
+
|
130 |
+
CLI(prepare)
|