khilan-crest's picture
Saving model gmra_cardiffnlp/twitter-roberta-base-sentiment-latest_30122024T181940
2f0088a verified
|
raw
history blame
2.03 kB
---
library_name: transformers
base_model: cardiffnlp/twitter-roberta-base-sentiment-latest
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: twitter-roberta-base-sentiment-latest_30122024T181940
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# twitter-roberta-base-sentiment-latest_30122024T181940
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8705
- F1: 0.6956
- Learning Rate: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 200
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Rate |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| No log | 1.0 | 323 | 0.9172 | 0.6218 | 0.0000 |
| 1.0967 | 2.0 | 646 | 0.8711 | 0.6842 | 0.0000 |
| 1.0967 | 3.0 | 969 | 0.8705 | 0.6956 | 0.0000 |
| 0.6577 | 4.0 | 1292 | 0.9586 | 0.6920 | 0.0000 |
| 0.4085 | 5.0 | 1615 | 0.9746 | 0.6869 | 0.0 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.20.3