physiotheraphy-E2

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.9564

  • F1: 0.9548

  • Precision: 0.9549

  • Recall: 0.9556

  • Loss: 0.2235

  • Classification Report: precision recall f1-score support

         0       0.92      0.95      0.93        57
         1       0.99      0.97      0.98        70
         2       1.00      1.00      1.00        33
         3       0.98      1.00      0.99        43
         4       1.00      1.00      1.00        34
         5       0.94      1.00      0.97        32
         6       0.95      0.94      0.95        65
         7       0.87      0.79      0.83        33
    

    accuracy 0.96 367 macro avg 0.95 0.96 0.95 367

weighted avg 0.96 0.96 0.96 367

  • Confusion Matrix: [[0.9473684210526315, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05263157894736842], [0.0, 0.9714285714285714, 0.0, 0.0, 0.0, 0.02857142857142857, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.046153846153846156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9384615384615385, 0.015384615384615385], [0.06060606060606061, 0.030303030303030304, 0.0, 0.030303030303030304, 0.0, 0.0, 0.09090909090909091, 0.7878787878787878]]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy F1 Precision Recall Validation Loss Classification Report Confusion Matrix
0.9195 0.9973 182 0.7248 0.7148 0.7616 0.7319 0.8807 precision recall f1-score support
       0       1.00      0.51      0.67        57
       1       0.98      0.69      0.81        70
       2       0.70      0.79      0.74        33
       3       0.74      0.86      0.80        43
       4       0.45      1.00      0.62        34
       5       0.80      0.50      0.62        32
       6       0.73      0.82      0.77        65
       7       0.70      0.70      0.70        33

accuracy                           0.72       367

macro avg 0.76 0.73 0.71 367 weighted avg 0.79 0.72 0.73 367 | [[0.5087719298245614, 0.017543859649122806, 0.08771929824561403, 0.08771929824561403, 0.07017543859649122, 0.0, 0.17543859649122806, 0.05263157894736842], [0.0, 0.6857142857142857, 0.0, 0.08571428571428572, 0.1, 0.05714285714285714, 0.07142857142857142, 0.0], [0.0, 0.0, 0.7878787878787878, 0.0, 0.21212121212121213, 0.0, 0.0, 0.0], [0.0, 0.0, 0.023255813953488372, 0.8604651162790697, 0.09302325581395349, 0.0, 0.023255813953488372, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.03125, 0.0, 0.46875, 0.5, 0.0, 0.0], [0.0, 0.0, 0.03076923076923077, 0.015384615384615385, 0.03076923076923077, 0.0, 0.8153846153846154, 0.1076923076923077], [0.0, 0.0, 0.06060606060606061, 0.030303030303030304, 0.09090909090909091, 0.0, 0.12121212121212122, 0.696969696969697]] | | 0.8122 | 2.0 | 365 | 0.8365 | 0.8228 | 0.8668 | 0.8177 | 0.5425 | precision recall f1-score support

       0       0.64      0.88      0.74        57
       1       0.86      0.84      0.85        70
       2       0.91      0.94      0.93        33
       3       0.88      0.98      0.92        43
       4       0.92      1.00      0.96        34
       5       1.00      0.44      0.61        32
       6       0.91      0.89      0.90        65
       7       0.83      0.58      0.68        33

accuracy                           0.84       367

macro avg 0.87 0.82 0.82 367 weighted avg 0.85 0.84 0.83 367 | [[0.8771929824561403, 0.03508771929824561, 0.03508771929824561, 0.0, 0.0, 0.0, 0.03508771929824561, 0.017543859649122806], [0.05714285714285714, 0.8428571428571429, 0.0, 0.08571428571428572, 0.0, 0.0, 0.0, 0.014285714285714285], [0.06060606060606061, 0.0, 0.9393939393939394, 0.0, 0.0, 0.0, 0.0, 0.0], [0.023255813953488372, 0.0, 0.0, 0.9767441860465116, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.25, 0.1875, 0.03125, 0.0, 0.09375, 0.4375, 0.0, 0.0], [0.07692307692307693, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8923076923076924, 0.03076923076923077], [0.24242424242424243, 0.06060606060606061, 0.0, 0.0, 0.0, 0.0, 0.12121212121212122, 0.5757575757575758]] | | 0.4541 | 2.9973 | 547 | 0.7929 | 0.7963 | 0.8137 | 0.8177 | 0.7462 | precision recall f1-score support

       0       0.86      0.74      0.79        57
       1       1.00      0.51      0.68        70
       2       0.91      0.91      0.91        33
       3       0.85      0.93      0.89        43
       4       0.71      1.00      0.83        34
       5       0.70      0.94      0.80        32
       6       0.69      0.91      0.78        65
       7       0.80      0.61      0.69        33

accuracy                           0.79       367

macro avg 0.81 0.82 0.80 367 weighted avg 0.83 0.79 0.79 367 | [[0.7368421052631579, 0.0, 0.05263157894736842, 0.0, 0.07017543859649122, 0.03508771929824561, 0.07017543859649122, 0.03508771929824561], [0.02857142857142857, 0.5142857142857142, 0.0, 0.1, 0.05714285714285714, 0.12857142857142856, 0.17142857142857143, 0.0], [0.0, 0.0, 0.9090909090909091, 0.0, 0.06060606060606061, 0.030303030303030304, 0.0, 0.0], [0.0, 0.0, 0.0, 0.9302325581395349, 0.0, 0.0, 0.046511627906976744, 0.023255813953488372], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0625, 0.9375, 0.0, 0.0], [0.046153846153846156, 0.0, 0.0, 0.0, 0.015384615384615385, 0.0, 0.9076923076923077, 0.03076923076923077], [0.06060606060606061, 0.0, 0.0, 0.0, 0.030303030303030304, 0.030303030303030304, 0.2727272727272727, 0.6060606060606061]] | | 0.3103 | 4.0 | 730 | 0.8583 | 0.8611 | 0.8684 | 0.8670 | 0.4772 | precision recall f1-score support

       0       0.96      0.77      0.85        57
       1       0.96      0.74      0.84        70
       2       0.91      0.97      0.94        33
       3       0.93      0.91      0.92        43
       4       1.00      0.97      0.99        34
       5       0.78      0.97      0.86        32
       6       0.73      0.97      0.83        65
       7       0.68      0.64      0.66        33

accuracy                           0.86       367

macro avg 0.87 0.87 0.86 367 weighted avg 0.87 0.86 0.86 367 | [[0.7719298245614035, 0.017543859649122806, 0.0, 0.0, 0.0, 0.017543859649122806, 0.03508771929824561, 0.15789473684210525], [0.0, 0.7428571428571429, 0.02857142857142857, 0.02857142857142857, 0.0, 0.04285714285714286, 0.15714285714285714, 0.0], [0.0, 0.030303030303030304, 0.9696969696969697, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.9069767441860465, 0.0, 0.023255813953488372, 0.06976744186046512, 0.0], [0.0, 0.0, 0.0, 0.0, 0.9705882352941176, 0.029411764705882353, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.96875, 0.03125, 0.0], [0.015384615384615385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9692307692307692, 0.015384615384615385], [0.030303030303030304, 0.0, 0.030303030303030304, 0.030303030303030304, 0.0, 0.09090909090909091, 0.18181818181818182, 0.6363636363636364]] | | 0.1391 | 4.9973 | 912 | 0.9046 | 0.9055 | 0.9004 | 0.9151 | 0.4130 | precision recall f1-score support

       0       0.90      0.79      0.84        57
       1       0.96      0.91      0.93        70
       2       0.94      1.00      0.97        33
       3       0.91      1.00      0.96        43
       4       1.00      1.00      1.00        34
       5       0.88      0.94      0.91        32
       6       0.95      0.86      0.90        65
       7       0.66      0.82      0.73        33

accuracy                           0.90       367

macro avg 0.90 0.92 0.91 367 weighted avg 0.91 0.90 0.91 367 | [[0.7894736842105263, 0.0, 0.03508771929824561, 0.0, 0.0, 0.0, 0.0, 0.17543859649122806], [0.0, 0.9142857142857143, 0.0, 0.02857142857142857, 0.0, 0.05714285714285714, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.03125, 0.0, 0.0, 0.0, 0.9375, 0.0, 0.03125], [0.06153846153846154, 0.015384615384615385, 0.0, 0.015384615384615385, 0.0, 0.0, 0.8615384615384616, 0.046153846153846156], [0.030303030303030304, 0.030303030303030304, 0.0, 0.030303030303030304, 0.0, 0.0, 0.09090909090909091, 0.8181818181818182]] | | 0.0753 | 6.0 | 1095 | 0.9401 | 0.9367 | 0.9365 | 0.9403 | 0.2873 | precision recall f1-score support

       0       0.93      0.89      0.91        57
       1       0.97      0.97      0.97        70
       2       1.00      0.97      0.98        33
       3       1.00      0.98      0.99        43
       4       0.87      1.00      0.93        34
       5       0.84      0.97      0.90        32
       6       0.95      0.92      0.94        65
       7       0.93      0.82      0.87        33

accuracy                           0.94       367

macro avg 0.94 0.94 0.94 367 weighted avg 0.94 0.94 0.94 367 | [[0.8947368421052632, 0.0, 0.0, 0.0, 0.07017543859649122, 0.017543859649122806, 0.0, 0.017543859649122806], [0.0, 0.9714285714285714, 0.0, 0.0, 0.0, 0.02857142857142857, 0.0, 0.0], [0.0, 0.0, 0.9696969696969697, 0.0, 0.030303030303030304, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.9767441860465116, 0.0, 0.023255813953488372, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.03125, 0.0, 0.0, 0.0, 0.96875, 0.0, 0.0], [0.046153846153846156, 0.0, 0.0, 0.0, 0.0, 0.015384615384615385, 0.9230769230769231, 0.015384615384615385], [0.030303030303030304, 0.030303030303030304, 0.0, 0.0, 0.0, 0.030303030303030304, 0.09090909090909091, 0.8181818181818182]] | | 0.0178 | 6.9973 | 1277 | 0.9455 | 0.9439 | 0.9535 | 0.9374 | 0.2430 | precision recall f1-score support

       0       0.85      0.96      0.90        57
       1       0.99      0.97      0.98        70
       2       1.00      0.97      0.98        33
       3       0.98      0.98      0.98        43
       4       1.00      1.00      1.00        34
       5       0.97      0.88      0.92        32
       6       0.93      0.95      0.94        65
       7       0.93      0.79      0.85        33

accuracy                           0.95       367

macro avg 0.95 0.94 0.94 367 weighted avg 0.95 0.95 0.95 367 | [[0.9649122807017544, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03508771929824561], [0.0, 0.9714285714285714, 0.0, 0.014285714285714285, 0.0, 0.014285714285714285, 0.0, 0.0], [0.030303030303030304, 0.0, 0.9696969696969697, 0.0, 0.0, 0.0, 0.0, 0.0], [0.023255813953488372, 0.0, 0.0, 0.9767441860465116, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0625, 0.03125, 0.0, 0.0, 0.0, 0.875, 0.03125, 0.0], [0.046153846153846156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9538461538461539, 0.0], [0.09090909090909091, 0.0, 0.0, 0.0, 0.0, 0.0, 0.12121212121212122, 0.7878787878787878]] | | 0.0037 | 8.0 | 1460 | 0.9564 | 0.9548 | 0.9549 | 0.9556 | 0.2235 | precision recall f1-score support

       0       0.92      0.95      0.93        57
       1       0.99      0.97      0.98        70
       2       1.00      1.00      1.00        33
       3       0.98      1.00      0.99        43
       4       1.00      1.00      1.00        34
       5       0.94      1.00      0.97        32
       6       0.95      0.94      0.95        65
       7       0.87      0.79      0.83        33

accuracy                           0.96       367

macro avg 0.95 0.96 0.95 367 weighted avg 0.96 0.96 0.96 367 | [[0.9473684210526315, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05263157894736842], [0.0, 0.9714285714285714, 0.0, 0.0, 0.0, 0.02857142857142857, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.046153846153846156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9384615384615385, 0.015384615384615385], [0.06060606060606061, 0.030303030303030304, 0.0, 0.030303030303030304, 0.0, 0.0, 0.09090909090909091, 0.7878787878787878]] | | 0.0034 | 8.9973 | 1642 | 0.9564 | 0.9548 | 0.9549 | 0.9556 | 0.2194 | precision recall f1-score support

       0       0.92      0.95      0.93        57
       1       0.99      0.97      0.98        70
       2       1.00      1.00      1.00        33
       3       0.98      1.00      0.99        43
       4       1.00      1.00      1.00        34
       5       0.94      1.00      0.97        32
       6       0.95      0.94      0.95        65
       7       0.87      0.79      0.83        33

accuracy                           0.96       367

macro avg 0.95 0.96 0.95 367 weighted avg 0.96 0.96 0.96 367 | [[0.9473684210526315, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05263157894736842], [0.0, 0.9714285714285714, 0.0, 0.0, 0.0, 0.02857142857142857, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.046153846153846156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9384615384615385, 0.015384615384615385], [0.06060606060606061, 0.030303030303030304, 0.0, 0.030303030303030304, 0.0, 0.0, 0.09090909090909091, 0.7878787878787878]] | | 0.0027 | 9.9726 | 1820 | 0.9564 | 0.9548 | 0.9549 | 0.9556 | 0.2193 | precision recall f1-score support

       0       0.92      0.95      0.93        57
       1       0.99      0.97      0.98        70
       2       1.00      1.00      1.00        33
       3       0.98      1.00      0.99        43
       4       1.00      1.00      1.00        34
       5       0.94      1.00      0.97        32
       6       0.95      0.94      0.95        65
       7       0.87      0.79      0.83        33

accuracy                           0.96       367

macro avg 0.95 0.96 0.95 367 weighted avg 0.96 0.96 0.96 367 | [[0.9473684210526315, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05263157894736842], [0.0, 0.9714285714285714, 0.0, 0.0, 0.0, 0.02857142857142857, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.046153846153846156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9384615384615385, 0.015384615384615385], [0.06060606060606061, 0.030303030303030304, 0.0, 0.030303030303030304, 0.0, 0.0, 0.09090909090909091, 0.7878787878787878]] |

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
22
Safetensors
Model size
19.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for khalilUoM/physiotheraphy-E2

Finetuned
(539)
this model

Evaluation results