mistral_7b_en / README.md
Divyasreepat's picture
Update README.md with new model card content
1b75265 verified
|
raw
history blame
6.36 kB
---
library_name: keras-hub
---
### Model Overview
Mistral is a set of large language models published by the Mistral AI team. Both pretrained and instruction tuned models are available with 7 billion parameters. See the model card below for benchmarks, data sources, and intended use cases.
Both weights and Keras model code is released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE).
## Links
* [Mistral 2 Quickstart Notebook](https://www.kaggle.com/code/matthewdwatson/mistral-quickstart)
* [Mistral 2 API Documentation](https://keras.io/api/keras_hub/models/mistral/)
* [Mistral 2 Model Card](https://huggingface.co/mistralai/Mistral-7B-v0.1)
* [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/)
* [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/)
## Installation
Keras and KerasHub can be installed with:
```
pip install -U -q keras-hub
pip install -U -q keras>=3
```
Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instructions on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page.
## Presets
The following model checkpoints are provided by the Keras team. Full code examples for each are available below.
| Preset name | Parameters | Description |
|-----------------------|------------|---------------|
|` mistral_7b_en` | 7.24B | 7B base model |
| `mistral_instruct_7b_en ` | 7.24B | 7B instruction-tuned model |
| `mistral_0.2_instruct_7b_en ` | 7.24B | 7B instruction-tuned model version 0.2 |
## Prompts
Mistral "instruct" models are instruction tuned on turn by turn conversations and should be prompted with examples that precisely match the training data. Specifically, you must alternate user and assistant turns that begin and end with special tokens. See the following for an example:
```python
prompt = """[INST] Hello! [/INST] Hello! How are you? [INST] I'm great. Could you help me with a task? [/INST]
"""
```
Base models (without instruct in the name) have no specific prompting structure, and should usually be fine-tuned for a specific task.
### Example Usage
```python
import keras
import keras_hub
import numpy as np
```
Use `generate()` to do text generation.
```python
mistral_lm = keras_hub.models.MistralCausalLM.from_preset("mistral_7b_en")
mistral_lm.generate("[INST] What is Keras? [/INST]", max_length=500)
# Generate with batched prompts.
mistral_lm.generate(["[INST] What is Keras? [/INST]", "[INST] Give me your best brownie recipe. [/INST]"], max_length=500)
```
Compile the `generate()` function with a custom sampler.
```python
mistral_lm = keras_hub.models.MistralCausalLM.from_preset("mistral_7b_en")
mistral_lm.compile(sampler="greedy")
mistral_lm.generate("I want to say", max_length=30)
mistral_lm.compile(sampler=keras_hub.samplers.BeamSampler(num_beams=2))
mistral_lm.generate("I want to say", max_length=30)
```
Use `generate()` without preprocessing.
```python
prompt = {
# `1` maps to the start token followed by "I want to say".
"token_ids": np.array([[1, 315, 947, 298, 1315, 0, 0, 0, 0, 0]] * 2),
# Use `"padding_mask"` to indicate values that should not be overridden.
"padding_mask": np.array([[1, 1, 1, 1, 1, 0, 0, 0, 0, 0]] * 2),
}
mistral_lm = keras_hub.models.MistralCausalLM.from_preset(
"mistral_7b_en",
preprocessor=None,
dtype="bfloat16"
)
mistral_lm.generate(prompt)
```
Call `fit()` on a single batch.
```python
features = ["The quick brown fox jumped.", "I forgot my homework."]
mistral_lm = keras_hub.models.MistralCausalLM.from_preset("mistral_7b_en")
mistral_lm.fit(x=features, batch_size=2)
```
Call `fit()` without preprocessing.
```python
x = {
"token_ids": np.array([[1, 315, 947, 298, 1315, 369, 315, 837, 0, 0]] * 2),
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2),
}
y = np.array([[315, 947, 298, 1315, 369, 315, 837, 0, 0, 0]] * 2)
sw = np.array([[1, 1, 1, 1, 1, 1, 1, 0, 0, 0]] * 2)
mistral_lm = keras_hub.models.MistralCausalLM.from_preset(
"mistral_7b_en",
preprocessor=None,
dtype="bfloat16"
)
mistral_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
```
## Example Usage with Hugging Face URI
```python
import keras
import keras_hub
import numpy as np
```
Use `generate()` to do text generation.
```python
mistral_lm = keras_hub.models.MistralCausalLM.from_preset("hf://keras/mistral_7b_en")
mistral_lm.generate("[INST] What is Keras? [/INST]", max_length=500)
# Generate with batched prompts.
mistral_lm.generate(["[INST] What is Keras? [/INST]", "[INST] Give me your best brownie recipe. [/INST]"], max_length=500)
```
Compile the `generate()` function with a custom sampler.
```python
mistral_lm = keras_hub.models.MistralCausalLM.from_preset("hf://keras/mistral_7b_en")
mistral_lm.compile(sampler="greedy")
mistral_lm.generate("I want to say", max_length=30)
mistral_lm.compile(sampler=keras_hub.samplers.BeamSampler(num_beams=2))
mistral_lm.generate("I want to say", max_length=30)
```
Use `generate()` without preprocessing.
```python
prompt = {
# `1` maps to the start token followed by "I want to say".
"token_ids": np.array([[1, 315, 947, 298, 1315, 0, 0, 0, 0, 0]] * 2),
# Use `"padding_mask"` to indicate values that should not be overridden.
"padding_mask": np.array([[1, 1, 1, 1, 1, 0, 0, 0, 0, 0]] * 2),
}
mistral_lm = keras_hub.models.MistralCausalLM.from_preset(
"hf://keras/mistral_7b_en",
preprocessor=None,
dtype="bfloat16"
)
mistral_lm.generate(prompt)
```
Call `fit()` on a single batch.
```python
features = ["The quick brown fox jumped.", "I forgot my homework."]
mistral_lm = keras_hub.models.MistralCausalLM.from_preset("hf://keras/mistral_7b_en")
mistral_lm.fit(x=features, batch_size=2)
```
Call `fit()` without preprocessing.
```python
x = {
"token_ids": np.array([[1, 315, 947, 298, 1315, 369, 315, 837, 0, 0]] * 2),
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2),
}
y = np.array([[315, 947, 298, 1315, 369, 315, 837, 0, 0, 0]] * 2)
sw = np.array([[1, 1, 1, 1, 1, 1, 1, 0, 0, 0]] * 2)
mistral_lm = keras_hub.models.MistralCausalLM.from_preset(
"hf://keras/mistral_7b_en",
preprocessor=None,
dtype="bfloat16"
)
mistral_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
```