sst-gpt2 / README.md
kennethge123's picture
Model save
7e68227 verified
---
license: mit
base_model: gpt2
tags:
- generated_from_trainer
datasets:
- sst
model-index:
- name: sst-gpt2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sst-gpt2
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the sst dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0218
- Mse: 0.0218
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mse |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.2144 | 1.0 | 534 | 0.0300 | 0.0301 |
| 0.0251 | 2.0 | 1068 | 0.0249 | 0.0250 |
| 0.0181 | 3.0 | 1602 | 0.0230 | 0.0230 |
| 0.0134 | 4.0 | 2136 | 0.0244 | 0.0244 |
| 0.0096 | 5.0 | 2670 | 0.0228 | 0.0228 |
| 0.0077 | 6.0 | 3204 | 0.0227 | 0.0227 |
| 0.0062 | 7.0 | 3738 | 0.0227 | 0.0227 |
| 0.0052 | 8.0 | 4272 | 0.0229 | 0.0229 |
| 0.0044 | 9.0 | 4806 | 0.0227 | 0.0226 |
| 0.0038 | 10.0 | 5340 | 0.0240 | 0.0240 |
| 0.0034 | 11.0 | 5874 | 0.0221 | 0.0221 |
| 0.0029 | 12.0 | 6408 | 0.0220 | 0.0220 |
| 0.0026 | 13.0 | 6942 | 0.0229 | 0.0229 |
| 0.0024 | 14.0 | 7476 | 0.0217 | 0.0217 |
| 0.002 | 15.0 | 8010 | 0.0225 | 0.0225 |
| 0.0018 | 16.0 | 8544 | 0.0222 | 0.0222 |
| 0.0016 | 17.0 | 9078 | 0.0217 | 0.0217 |
| 0.0015 | 18.0 | 9612 | 0.0218 | 0.0218 |
| 0.0014 | 19.0 | 10146 | 0.0217 | 0.0217 |
| 0.0013 | 20.0 | 10680 | 0.0218 | 0.0218 |
### Framework versions
- Transformers 4.37.0
- Pytorch 1.13.1+cu117
- Datasets 2.15.0
- Tokenizers 0.15.2