message-toxicity / README.md
kearney's picture
Update README.md
b3d38d1
|
raw
history blame
2.42 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: toxic-text-classifier
    results: []

toxic-text-classifier

This model is a fine-tuned version of distilbert-base-uncased on a custom dataset curated by the model engineer. It achieves the following results on the evaluation set:

  • Loss: 0.4112
  • Accuracy: 0.822

Model description

This model classifies social messages as either Healthy or Toxic.

  • Toxic messages are inappropriate, offensive, harassing, vulgar, threatening, discriminatory, and hate.
  • Healthy messages are non-toxic.

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 0.2

Training results

Epoch Step Validation Loss Accuracy
0.01 10 0.6865 0.506
0.02 20 0.6444 0.566
0.03 30 0.5503 0.727
0.04 40 0.5212 0.75
0.05 50 0.4971 0.769
0.06 60 0.4597 0.787
0.07 70 0.4458 0.796
0.08 80 0.4340 0.802
0.09 90 0.4339 0.814
0.1 100 0.4602 0.801
0.11 110 0.4563 0.799
0.12 120 0.4445 0.808
0.13 130 0.4654 0.8
0.14 140 0.4516 0.804
0.15 150 0.4326 0.809
0.16 160 0.4144 0.814
0.17 170 0.4091 0.822
0.18 180 0.4086 0.822
0.19 190 0.4099 0.822
0.2 200 0.4112 0.822

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1
  • Datasets 2.14.4
  • Tokenizers 0.13.3